
.

20.02.2025

Peter Levinsky IT, Roskilde

2

0

.

0

2

.

2

2

• CPU-bound operations

• I/O-bound operations

Levels of parallelism:

• Thread -- basic structure for parallelism

(in most programming languages)

• Task -- C# smooth variant i.e. Task.Run(---)

• Parallel.Invoke -- Can start several threads

(blocked until after all thread is completed)

• Parallel.For / Foreach -- Can start several threads in a loop

(blocked until after all thread is completed)

• Plinq -- can execute a Linq expression in parallel

2

0

.

0

2

.

2

3

Race Conditions:

2

0

.

0

2

.

2

4

Common area (shared data) between several threads

Like ‘done’ in ThreadTest

2

0

.

0

2

.

2

5

Thead1

Thread2

A. Mutal Exclusion with busy waiting

while (x != 0); // do nothing though loop again

Petersons solution / TSL in machine language

B. Sleep and wakeup

i. Lock

ii. Semaphores

iii. Mutex (binary semaphores)

iv. Monitors (e.g. bounded buffer)

2

0

.

0

2

.

2

6

Lock

Ensure only one thread in block

Semaphore

Down for enter – count down by one if possible otherwise wait

Up for leave – increment by one if not reach roof (counting e.g. max 10)

C# waitOne, Release

Mutex

General like semaphore where roof is one

C# waitOne, ReleaseMutex

Monitor

The monitor are the critical section

Variable => conditions || Wait / signal

C# Enter / Exit

2

0

.

0

2

.

2

7

• The Dining Philosophers Problem
Need two resources

• Producer / Consumer
Send data from producer to consumer – like a production line

• The Readers and Writers Problem
Many reader (shared) one writer (exclusive) – like a Database

• The Sleeping Barber Problem
A limited queue to one resource

2

0

.

0

2

.

2

8

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Readers%E2%80%93writers_problem
https://en.wikipedia.org/wiki/Sleeping_barber_problem

Philosophers do

Think

Eat

2

0

.

0

2

.

2

9

#define N 5/* number of philosophers */

void philosopher(int i)/* i: philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */

take_fork(i); /* take left fork */

take_fork((i+1) % N);/* take right fork; % is modulo operator */

eat(); /* yum-yum, spaghetti */

put_fork(i); /* Put left fork back on the table */

put_fork((i+1) % N);/* put right fork back on the table */

}

}

2

0

.

0

2

.

2

10

void philosopher (int i)/* i: philosopher number, from 0 to N-1 */

{

while (TRUE) {/* repeat forever */

think();/* philosopher is thinking */

take_forks(i);/* acquire two forks or block */

eat();/* yum-yum, spaghetti */

put_forks(i);/* put both forks back on table */

}

void test(i)/* i: philosopher number, from 0 to N-1 */

{

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT]

!= EATING) {

state[i] = EATING;

up(&s[i]);

}

}

2

0

.

0

2

.

2

11

void take_forks(int i)

{

down(&mutex); /* enter critical region */

state[i] = HUNGRY;/* record fact that philosopher i is hungry */

test(i);/* try to acquire 2 forks */

up(&mutex); /* exit critical region */

down(&s[i]); /* block if forks were not acquired */

}

void put_forks(i)/* i: philosopher number, from 0 to N-1 */

{

down(&mutex); /* enter critical region */

state[i] = THINKING;/* philosopher has finished eating */

test(LEFT); /* see if left neighbor can now eat */

test(RIGHT);/* see if right neighbor can now eat */

up(&mutex); /* exit critical region */

}

