
.

20.02.2025

Peter Levinsky IT, Roskilde

2

0

.

0

2

.

2

2

• CPU-bound operations

• I/O-bound operations

2

0

.

0

2

.

2

3

Thread t = new Thread (-- delegate Method --);

t.Start();

…

t.Join(); // wait here until t is completed

? Delegate Method

2

0

.

0

2

.

2

4

• Like you have references to objects

• A delegate is a reference to a method

How to define:

public delegate <<returnType>> MethodName(<<parameter list>>); // MethodName often xxxMethodType

How to declare:

xxxMethodType methodReferenceName;

How to instantiate:

methodReferenceName = 1) NameOfMethod

2) Lambda expression

How to use:

ReturnType var-name = methodReferenceName(parameter values);

2

0

.

0

2

.

2

5

C# has a lot of build-in method types

• Action: a set of methods with no return types (i.e. void)

ex. Action<int, string> is equal to public delegate void XX(int i, String str)

• Func: a set of methods with return types (the LAST type is the return type)

ex. Func<int> is equal to public delegate int XX()

ex. Func<int,string,bool> is equal to public delegate bool XX(int i, String str)

• Predicate: a set of methods with bool return type and only one parameter

ex. Predicate<string> is equal to public delegate bool XX(String str)

2

0

.

0

2

.

2

6

class ThreadTest

{

static bool done=false; // Static fields are shared between all threads

static void Main()

{

new Thread (Go).Start();

Go();

}

static void Go()

{

if (!done) { done = true; Console.WriteLine ("Done"); }

}

}

2

0

.

0

2

.

2

7

Levels of parallelism:

• Thread -- basic structure for parallelism

(in most programming languages)

• Task -- C# smooth variant i.e. Task.Run(---)

• Parallel.Invoke -- Can start several threads

(blocked until after all thread is completed)

• Parallel.For / Foreach -- Can start several threads in a loop

(blocked until after all thread is completed)

• Plinq -- can execute a Linq expression in parallel

2

0

.

0

2

.

2

8

Excerises C#Exercises Prog.4.1, 4.2

2

0

.

0

2

.

2

9

2

0

.

0

2

.

2

10

