
Bounded Buffer Advanced Software Construction pele/feb/25

To understand and to implement a bounded Buffer, a thread safe exchange of data

C#Note Prog04 pp.1-21, slides Concurrency-part1.pdf & Concurrency-part2.pdf

Example see: Producer–consumer problem - Wikipedia

Set up scenario

You are to design and implement one or more subsystems to produces ‘items’ (of some kinds).

These items have to be sent/given to another subsystems which consumes the items and print them

out.

Step 1: Implement a model class ‘Item’ with the properties Id, Value(int), make sure the class itself

generate a unique id.

Step 2: Create a class ’Experiment’

Step 3: In the Experiment class design and implement a method ‘Producer’, which generate a new

item with random values and put them into a queue to the consumer. The generation of items

should be with random time periods e.g. between 10-150 msec.

(Hints use Thread.Sleep and the class Random)

Step 4: In the Experiment class design and implement another method ‘Consumer’, which takes out

Items from the queue and prints them out. Again taking items out of the queue should be with

random time periods.

Step 5: In the Experiment class design and implement a method ‘Start()’, to instantiate a queue

object, together with 4 producers one in each thread and two consumers.

Step 6: In program create an object of the Experiment class and call the method Start().

Notice what happened?

../materiale/Concurrency-part1.pdf
../materiale/Concurrency-part2.pdf
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

Bounded Buffer Advanced Software Construction pele/feb/25

Next step is to implement a Bounded Buffer class

You are to implement a new class BoundedBuffer, preferable generic, to exchange data thread safe

between threads

Step 1: Create a class BoundedBuffer

Step 2: Make four instance fields:

 a Queue (’buffer’).

 one semaphore (’empty’) to indicate the queue is empty.

 one semaphore (’full’) to indicate the queue is full.

 a lock (’lockObj’) for atomize / synchronize thread access.

Step 3: Make a method Insert (item)

 Use the lock to ensure only one thread at the time can execute the method

 Use the full-semaphore to ensure free space in the queue

 insert the item in the queue

 Release the empty-semaphore

Step 4: Make a method Take () – return an item

 Use the lock to ensure only one thread at the time can execute the method

 Use the empty-semaphore to ensure the queue do contains at least one item

 take the item from the queue

 Release the full-semaphore

In the program from exercise 1 refactor the codse to use your bounded buffer instead of a plain

queue.

What happen now when running?

What happen if you start 10 producers ? or 10 consumers?

Extra E1: In C# exists a data structure ConcurrentQueue, why is this data structure not direct a

substitute for the BoundedBuffer?

