Rest Exercise 1: First REST controller

In this exercise you must program a simple REST controller using the model and repository classes you
already have (from Programming).

Hint: If you don’t already have Postman installed, it’s a good idea to install it now

| recommend the desktop version of Postman, it makes it easier to test your projects running on your
computer (se Tools).

Make the project
Open Visual Studio and create a new project: Choose ASP.NET Core Web Api

NOTICE: It is APl not APP you should choose

- o x
Create a new project -
Proj api "‘ ‘ Clearall
Recent project templates Al languages - Allplatforms ~ Al project types
s ASPNET Core Wel =
& *O|
B Console App © D Ap a s or minimal BB, with optional support for Open AP land
aut
8] ASPNET Core Web App (Razor Pages) & & lnux mac 05 Windows APl Cloud Semice Web Wen APl
M Class Library (= Ei ASP.NET Core Wet M
A project te reating a RESTTul Web AP| using ASP.NET Core minimal APls published as native ACT,
@ Blazor Web App c= @ L mac 05 Windows APl Cloud Semice Web Web APl
A w
&l ASP.NET Core Web AP| = Eo] -
A broiect temolate for creatina an ASP.NET Core aoplication with an examole Controller for a RESTul HTTP service. This temblate can also be used

Give your project a name (could be RestExercisel?)
Then select the following options

e Select .NET 8.0
e Uncheck “Configure for HTTPS”

Additional information

ASP.NET Core Web API c# Linux macOs Windows API Cloud Service

Framework (@)

| MET 8.0 (Long Term Support) v|

Authentication type (@

| None d

[] Configure for HTTPS @

na iner support (@)
Container 0S @)

Container build type @

[#] Enable OpenAPI support ()

I:‘ Do not use top-level statements ()

Use controllers (3

Your project settings should look like the picture above

Tools/ch2-Tools.htm

Run the project

The project you created is not empty: It has a REST controller called WeatherForecastController.
Run the project: Press Ctrl+F5 (Build menu -> Start without debugging).

This should compile the application and open a browser with a GET request to the
WeatherForecastController.

You should see something similar to this

- O X

e localhost:29156/weatherforecast X + °
C @ localhost:29156/weatherforecast & Y e H
i Apps E TimeEdit Zealand @ Education - Micros. u Peters a Dansk ugeplan a International ugeplan E Morten, program » Leeseliste

[{"date":"2021-89-09T15:00:07.3130661+02:00" , "temperatureC”:15, "temperatureF":58,"summary":"Mild"},{"date": "2021-09-
10T15:00:07.3191757+02:00", "temperatureC"”:41, "temperatureF":185, "summary" : "Balmy"},{"date": "2021-89-
11T15:00:07.3191809+02:00", "temperatureC"”:49, "temperatureF":120, "summary” : "Balmy"},{"date":"2021-09-
12T15:00:07.3191815+02:00", "temperatureC": 24, "temperatureF": 75, "summary": "Hot"},{"date":"2021-09-
13T15:00:07.3191818+02:00", "temperatureC”:40, "temperatureF":103, "summary" : "Freezing"}]

The port number (29156 in this case) might be different.

The layout of the JSON document might be different - depending on the browser.
Copy the URL to Postman.

Send a GET request from POSTMAN.

You should see a similar JSON document in the response.

Clean up the project

As you can see, the project will by default contain a weatherforecast service.
This is not needed for your project.
Delete the WeatherForecast and the WeatherForecastController files:

:'=_| RestExercisel

gy Connected Services

& Dependencies

2] Properties
= Controllers
C# WeatherForecastController.cs
[i}] appsettings.json
C# Program.cs

CH WeatherForecast o=

Instead you should create your own Model and Controller classes (and a Repository)

Import DLL

Now you should import the library project that you have created in the programming course, as a DLL file.

This library should contain both a Model class and a Repository class.

Note: If your model class doesn’t have a default/empty constructor, you might run into some problems, so
now is a good time to add that, if that is the case.

In order to import the file, you should (in the REST project) right click on the “Dependencies” item, in the
Solution explorer (your name of the projects are different!)

4 + 5] PokeRESTe7

P @ Connected Services

P &5 Dependencies

The go to the Browse tab

Projects

Shared Projects
COM

Browse

Recent

And then the browse button at the bottom.

Then you must find your library project, and then into the folders:

Bin->Debug->net8.0

Example:
C:\Users\zealand\source\repos\ActorAPI\ActorRepositoryLib\bin\Debug\net8.0
If there isn’t any DLL file in the folder, then you must build your library project.

If everything went as expected, you should now have a reference to your library classes.

Data transfer object (DTO) class/record

For getting data into the controller (se below) you need a DTO object.
So, create a folder named ‘model’. In this folder create a ‘class’ ActorDTO i.e.

public record ActorDTO (int Id, string Name, int BirthYear);

This type you are going to use in the POST and the PUT methods.

Next in the same folder create a class ConvertActor. This class should have a static method
public static Actor ActorDTO2Actor(ActorDTO dto){ ... code .. }

which takes an ActorDTO object and make a new Actor object, where all the properties are copied into.

Controller class
Now you can make the controller class.

Right click on the Controllers folder, and click Add -> Controller

©d View in Browse ogle Chrome) Ctrl+Shift+W

Browse With...

Controller... Add

\azor Component... Scope to This

It is important that you choose the API to the left, and then select the “API Controller with read/write
actions”.

You can also choose “Api Controller - Empty” but the read/write option gives you some methods you can
easily change

Add New Scaffolded ltem

4 |nstalled

4 Common . . .
‘I:: API Controller - Empty .L&PIP Controf!:er with read/write actions
by Iy o
v1.0

‘E: ARz E i i A RS An AP| controller with REST actions to

create, read, update, delete

‘E: API Controller with actions, using Entity Framework

Id: ApiControllerWithActions5caffolder

Identity
Layout

Now name the Controller xClassController (replace the Italic xClass with the model name, but put it in
plural, for example ActorsController). General naming scheme: Noun in plural + Controller.

A few things to notice

e The Http related annotations like [ApiController], [Route], [HttpGet] etc.
e The controller methods generally just call the repository methods.

You might also notice that the Controller constructor expects an initialized Repository object (injected).
This is because we want the same object to be used every time. So we need to apply the Singleton pattern.
Luckily we can easily do this in the program.cs file.

Simple add the following line (changing the ActorsRepository to your repository class name):

builder.Services.AddSingleton<ActorsRepository>(new ActorsRepository()); OR use an interface for the
repository.

Remember to have the using statement. Especially because the Repository is most likely in another
namespace.

After the builder.Services.AddControllers(); line

It should now look something like this:

” File Edit View Git Project Build Debug Test Apalyze Jools Extensions Window Help Search (Ctrl+ Q)

® - H-2B2AE Debug - Any CPU - P ohitp - [> O-|/®BH.i¥ H
§ ActorsRepository.cs Program.cs* & X ActorsController.cs ActorRestService: Overview
@ @ﬁActorRestService -

i i@ 1 | using ActorRestService;
= 2
2 3 || var builder = WebApplication.CreateBuilder(args);
Lzl iy
1;—‘ 5 // Add services to the container.
o 6
i builder.Services.AddControllers();
8 // Learn more about configuring Swagger/OpenAPI at https://aka.ms/aspnetcore/swashbuckle
9 builder.Services.AddEndpointsApiExplorer();
18 builder. Services.AddSwaggerGen();
11
12
13 builder.Services.AddSingleton (new ActorsRepository());
14
15 var app = builder.Build();
16
17 // Configure the HTTP request pipeline.
185" Eif (app.Environment.IsDevelopment())
19 {
20 app.UseSwagger();
21 app.UseSwaggerUI();
22 H
23
24 app.UseAuthorization();
25
26 app.MapControllers();
27
28 app.Run();

29

Try your REST controller
Run the application (Ctrl+F5).

Browser opens and tries to show the WeatherForecast, but that is now removed.

You want to interact with your controller: Browse to/api/Actors (still in plural, or your controller name

minus the controller part of the name)
Copy the URL to Postman.

o TryGET
e TryGETbyid

e Try POST, which requires a JSON document in the request body

e Try DELETE

e Try PUT, requires a JSON document in the request body

e POST, including JSON document in request body

= ¢ Home Workspaces ~ APl Network ~ Explore (Search Postma

:,: Please complete your account verification. We've sent the verification link te pele@zealand.dk

2 My Workspace New Import & Overview GET http://localhost:5150/a @
i) T = e iiiF http:/flocalhost:5150/api/Actors

Collections

> New Collection

= GET ~ | hupiflocalhost:5150/apifActors

Env
N Params Authorization Headers (6) Body Pre-request Scrip
D)

History Query Params
Key Value

oo

Body Cookies Headers (4) Test Results

Pretty Raw Preview Visualize JSON ~

[
"valuel®,
"value2

]

Bwor R

E (@ online O Find and replace £ Console

4|

What happens when you try to add the same ID more than once?

o IR

Description

00 OK 499 ms

(&)
o

Upgrade ~ - %
Resend Verification Email x|
No Environment w =S
[Save

m @

Cookies

al
C

Be aware, when you are using Postman, it will by default tell the server that the data sent is formatted in
plain text, not in JSON. To change this, you should add the highlighted header, and disable/remove any

other header called Content-Type:

Params Authorization Headers (10) Body @ Pre-request Script Tests Settings
-y | T - g

Accept-Encoding @ gzip, deflate, br
Connection @ keep-alive
Content-Type application/json

Naming the REST resource
If you are not happy with the name .../api/xClass you can change it.

In the top of Controller class change [Route("api/[controller]")] to [Route(“yourFavoriteName”)]

If you want the browser to start with your controller instead of WeatherForecast when you run the
application then open the file Properties/launchSettings.json in your project.

Find launchUrl and change the value to the name of your REST controller.

How everything works ...
A simple sequence diagram showing how various classes react to an incoming HTTP request

localhost or Azure App Service = Web App

REST consumer REST Repository “

HTTP client server contoller :
HTTPrequest | | | |
(JSON) | |
(model object)— | 1
| |
——(model object)—p
|

——(model object)}—p|

(model object(s))

(model object(s))

status code
_ HTTP response: status code

(JSON)

I
I
I
r
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
|
= -
I
I
|
|

|
|
|
|
|
|
|
|
|
|
|
r
|
|
1
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
[
(model object(s)) |
-7
|
|
|
|
|
|
|

