
Design Pattern
(OOProg chapter 3)

.

20.10.2024

Peter Levinsky, IT Roskilde



• S Single Responsibility -> High cohesion for classes

• O Open / Closed -> open for extensions

• L Liskov Substitution 

-> Subclasses ‘same’ behaviour e.g. pre- and post conditions

• I Interface Segregation -> Separate interfaces (minimize)

• D Dependency Injection/Inversion -> parameter, methods, objects

2

0

.

1

0

.

2

2



2

0

.

1

0

.

2

3

Name – common term – a technical term/concepts among programmers

Problem – description of the problem

Solution – Only! A Design solution (UML diagrams)



2

0

.

1

0

.

2

4

• Information Expert

• Creator Pattern

• Controller

• Low Coupling

• High Cohesion



2

0

.

1

0

.

2

5

• Singleton - only one object

• Controller - PageModel

• Template - reuse og code

• State - different behaviour depending on states



2

0

.

1

0

.

2

6

. . .



2

0

.

1

0

.

2

7

• Creational Patterns
• Factory, Abstract Factory, Singleton …

• Structural Patterns
• Adaptor, Proxy, Facade, Decorator …

• Behavioral Patterns
• Observer, Template, Strategy, State …

• Concurrency patterns
• Monitor, Lock, Thread Pool



2

0

.

1

0

.

2

8

• Factory

• Problem: Who should be responsible for creating objects when there are special considerations, 

such as complex creation logic, a desire to separate the creation responsibilities for better cohesion, 

and so forth?

• Solution:

Static method



2

0

.

1

0

.

2

9

• Singleton

• Problem: Exactly one instance of a class is allowed.

• Solution:



2

0

.

1

0

.

2

10

One set of factory

Another set of factory



• Demo af Factory, Singleton og Abstract Factory

2

0

.

1

0

.

2

11



2

0

.

1

0

.

2

12

• Adaptor

• Problem: How to resolve incompatible interfaces, or provide a stable interface to 

similar components with different interfaces?

• Solution:



2

0

.

1

0

.

2

13

• Facade

• Problem: A common, unified interface to a disparate set of implementations or 

Interfaces such as within a subsystem is required.

• Solution:



2

0

.

1

0

.

2

14

• Proxy

• Problem: How to 

provide a 

placeholder for 

another object to 

control access to it.

• Solution:



2

0

.

1

0

.

2

15

• Decorator

• Problem: How 

to Attach 

additional 

responsibilities 

to an object 

dynamically

• Solution:

1



2

0

.

1

0

.

2

16

• Composite

• Problem: How to 

represented a part-

whole hierarchy so 

that clients can treat 

part and whole 

objects uniformly.

• Solution:



• Adaptor, Proxy, Facade, Decorator, Composite

• Training: Exercises 3.1 (Factory), 3.2(Abstract Factory), 3.3 (Adaptor)

• Mandatory Assignment

2

0

.

1

0

.

2

17


