
.

08.04.2024

Peter Levinsky IT, Roskilde

0

8

.

0

4

.

2

2

• CPU-bound operations

• I/O-bound operations

0

8

.

0

4

.

2

3

Thread t = new Thread (-- delegate Method --);

t.Start();

…

t.Join(); // wait here until t is completed

? Delegate Method

0

8

.

0

4

.

2

4

class ThreadTest

{

static bool done; // Static fields are shared between all threads

static void Main()

{

new Thread (Go).Start();

Go();

}

static void Go()

{

if (!done) { done = true; Console.WriteLine ("Done"); }

}

}

0

8

.

0

4

.

2

5

Levels of parallelism:

• Thread -- Basic structure for parallelism (in most programming languages)

• Task -- C# smooth variant i.e. Task.Run(<<delegate method>>)

• Parallel.Invoke -- Can start several threads (continues after all thread is completed)

• Parallel.For/Foreach -- Can start several threads in a loop (continues after all thread is completed)

• Plinq -- Can execute a Linq expression in parallel

0

8

.

0

4

.

2

6

• Use of built in features async / await
Do not create a new thread but make use of a coroutine i.e. program continue and ‘jumps’ back to

the await call when it is ready.

• Where to use

• I/O-bound operations – Like network, accessing files etc.

• How to use

• Method is async – like public async Task<int> DoSomethingAsync()

• In method body … somewhere

await ….. return anInteger;

0

8

.

0

4

.

2

7

What is Async / Await ?

• The use of Async / Await is not directly the same as a thread / task !

• But the program will wait at ‘await’ until this job is done

• And you can continue do other stuff in between

e.g. show information about ‘work in progress’ (Jacob Nielsen – System status)

Task<List<Picture>> pictures = await ReadPicturesFromFile(“somefile.pic”);

Status = “Getting pictures …”; // set system status

foreach(var pic in pictures.Result){

…

}

0

8

.

0

4

.

2

8

Opgaver C#Exercises Prog.3.6+3.7

0

8

.

0

4

.

2

9

