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• CPU-bound operations

• I/O-bound operations
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Thread t = new Thread (-- delegate Method --);

t.Start(); 

…

t.Join(); // wait here until t is completed

? Delegate Method
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class ThreadTest

{

static bool done;    // Static fields are shared between all threads

static void Main()

{

new Thread (Go).Start();

Go();

}

static void Go()

{

if (!done) { done = true; Console.WriteLine ("Done"); }

}

}
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Levels of parallelism:

• Thread -- Basic structure for parallelism  (in most programming languages)

• Task -- C# smooth variant i.e. Task.Run(<<delegate method>>)

• Parallel.Invoke -- Can start several threads  (continues after all thread is completed)

• Parallel.For/Foreach -- Can start several threads in a loop (continues after all thread is completed)

• Plinq -- Can execute a Linq expression in parallel
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• Use of built in features async / await
Do not create a new thread but make use of a coroutine i.e. program continue and ‘jumps’ back to 

the await call when it is ready.

• Where to use

• I/O-bound operations – Like network, accessing files etc.

• How to use

• Method is async – like public async Task<int> DoSomethingAsync()

• In method body … somewhere

await …..               return anInteger;
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What is Async / Await ?

• The use of Async / Await is not directly the same as a thread / task !

• But the program will wait at ‘await’ until this job is done

• And you can continue do other stuff in between

e.g. show information about ‘work in progress’ (Jacob Nielsen – System status)

Task<List<Picture>> pictures = await ReadPicturesFromFile(“somefile.pic”);

Status = “Getting pictures …”; // set system status

foreach(var pic in pictures.Result){

…

}
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Opgaver C#Exercises Prog.3.6+3.7
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