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Program testing goals

* To demonstrate to the developer and the customer that the software
meets Its requirements.
=> |eads to validation testing

 To discover situations in which the behavior of the software Is incorrect,
undesirable or does not conform to its specification.
=> |eads to defect testing
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Verification vs validation

* Verification: (testing)
"Are we building the product right”.

« The software should conform to its specification.

 Validation: (checking)
"Are we building the right product”.

« The software should do what the user really requires.
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Testing - principles
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Set up Test
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Driver:
An upstream software or interface that Driver

provides access to the function
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_Stub:
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downstream process
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Different levels of testing
related to the V-model

 Validation of the concepts and requirements
e.g. Are the domain model right? The use stories? (the users)
Validation of the design

e.g. design class diagrams and design sequence diagrams
(Reviews, Technical walkthrough by the project team)

Component Verification
e.g. unit test and test cases (implementer)
System and integration Verification
e.g. system/integration test
Operation Verification

e.g. acceptance test
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Black Box & White Box test

 Black box
* Look at methods (system part) as a closed box
« Know only interface

* White box
* Look inside the methods (system part)
* Look at all possible path through the methods
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Black box testing

* The system code is ‘unknown’ -> a black box
 Look only at the methods signatures

» Testing all kind of possible input and output
* In C# create a Unit Test
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Equivalence partitioning
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Equivalence partitions
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Unit test in C# - Visual Studio

» Create a test unit project,
« Add reference to the project,
« Remember to have the class to be tested public.

« Make a test method for each test case

Zealand

13



What can we do in in a test unit

 Annotations

 [TestClass] : set up the test

» [TestMethod | : This is a test method to be run

« [Testlnitialize] : Run this before each test method
« [Classlinitialize] : Run this before the test starts

« [DataRow (x,y)] : give test method parameter

Testing verification

Assert.AreEqual( expected, actual)
Assert.IsTrue(actual)

Assert. ThrowsException<XXException>( ()=> -- act -- )
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Practice - Test case in UNIT test

* Arrange

« Set up the test (part could be in test TestInitialize)
« Give all input the testing data
» Give expected data the expected values

e Act
 Run the method

e Assert
 Check if the test have succeed
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Example

[TestMethod]
public void TestMethodl ()

{
// Arrange

Person p = new Person (”SomeName”, "“SomePhone”, ”“SomeAddress”);
String expectedPhone = ”“SomePhone”;
//Act

String actualPhone = p.Phone; // do the action - here just read a property

//Assert
Assert.AreEqual (expectedPhone, actualPhone);
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