Software Testing

Peter Levinsky IT Roskilde

05.02.2024

Zealand Academy of Technologies and Business

The V Model

Concept of ﬂpera}inn

- L L] ﬂ"

Operations V-Erlglﬁﬂtlﬂ-n Maintenance

_ Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, _

Detailed Test, and Project
Design Verification Test and

Integration

Implzmzntation

>
Time

Zealand

Program testing goals

* To demonstrate to the developer and the customer that the software
meets Its requirements.
=> |eads to validation testing

 To discover situations in which the behavior of the software Is incorrect,
undesirable or does not conform to its specification.
=> |eads to defect testing

Zealand

Verification vs validation

* Verification: (testing)
"Are we building the product right”.

« The software should conform to its specification.

 Validation: (checking)
"Are we building the right product”.

« The software should do what the user really requires.

Zealand

The V Model

Concept of ﬂpera}inn

- L L] ﬂ"

Operations V-Erlglﬁﬂtlﬂ-n Maintenance

_ Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, _

Detailed Test, and Project
Design Verification Test and

Integration

Implzmzntation

>
Time

Zealand

Testing - principles

Zealand

Input Test Data IIE _ﬁ
System

~

Output Test Results 0, y.

Inputs Causing
Anomalous
Behavior

Outputs Which Reveal
the Presence of
Defects

Set up Test

Zealand

Driver:
An upstream software or interface that Driver

provides access to the function

Function

Y\

_Stub:
software that simulates a Stub 1 Stub 2
downstream process
Simple Complex

Different levels of testing
related to the V-model

 Validation of the concepts and requirements
e.g. Are the domain model right? The use stories? (the users)
Validation of the design

e.g. design class diagrams and design sequence diagrams
(Reviews, Technical walkthrough by the project team)

Component Verification
e.g. unit test and test cases (implementer)
System and integration Verification
e.g. system/integration test
Operation Verification

e.g. acceptance test

Zealand

Black Box & White Box test

 Black box
* Look at methods (system part) as a closed box
« Know only interface

* White box
* Look inside the methods (system part)
* Look at all possible path through the methods

Zealand

Black box testing

* The system code is ‘unknown’ -> a black box
 Look only at the methods signatures

» Testing all kind of possible input and output
* In C# create a Unit Test

Zealand

10

Equivalence partitioning

Zealand

Input Equivalence Partitions

Output Partitions

System

Possible Inputs

Correct
Outputs

Possible Outputs

11

Equivalence partitions

Zealand

3 11

L 1]

Less than 4

Between 4 and 10

More than 10

Number of Input Values

9999

100000

10000 50000 99999

|

|

|

Less than 10000

Between 10000 and 99999

More than 99999

Input Values

12

Unit test in C# - Visual Studio

» Create a test unit project,
« Add reference to the project,
« Remember to have the class to be tested public.

« Make a test method for each test case

Zealand

13

What can we do in in a test unit

 Annotations

 [TestClass] : set up the test

» [TestMethod | : This is a test method to be run

« [Testlnitialize] : Run this before each test method
« [Classlinitialize] : Run this before the test starts

« [DataRow (x,y)] : give test method parameter

Testing verification

Assert.AreEqual(expected, actual)
Assert.IsTrue(actual)

Assert. ThrowsException<XXException>(()=> -- act --)

Zealand

14

Practice - Test case in UNIT test

* Arrange

« Set up the test (part could be in test TestInitialize)
« Give all input the testing data
» Give expected data the expected values

e Act
 Run the method

e Assert
 Check if the test have succeed

Zealand

15

Example

[TestMethod]
public void TestMethodl ()

{
// Arrange

Person p = new Person (”SomeName”, "“SomePhone”, ”“SomeAddress”);
String expectedPhone = ”“SomePhone”;
//Act

String actualPhone = p.Phone; // do the action - here just read a property

//Assert
Assert.AreEqual (expectedPhone, actualPhone);

Zealand

16

