
Server Framework2

Logging
Configuration

Tracing / logging information

• Instead of using Console.WriteLine use tracing / logging for
released Systems.

• You can setup the log to write to:
– The Console

– A File, in different formats

– (Windows Event Log)

• The Tracing can have several output channels

• The Trace level can be changed (actual at runtime)

Overview Tracing / logging

Program TraceSource

XXTraceListener

YYTraceListener

AAFilter

BBFilter

SourceSwitch

How to Choose Output Chanel
• The TraceSource class can write to “TraceListener”

• The ”TraceListener” is an abstract class
i.e. you need concrete TraceListener class.

• They work like observers
i.e. you can add them to a TraceSource (ts) object like:

ts.Listeners.Add(objOfTraceListener);

• C# have some buildt in classes like:
– TextWriterTraceListener

– XmlWriterTraceListener

– EventLogTraceListener

• Customer Created Listener

Make your own TraceListener class

• You can design and implement you own Listener by
Inherits from TraceListener and override:

– public override void Write(string message)

– public override void WriteLine(string message)

Trace Level

• TraceSource works with diff. Levels of logging
– Verbose

– Info

– Warning

– Error

– Critical

• Setting actual levels of logging ex:
ts.Switch = new SourceSwitch("Peters","All");

• You specify the level when you logging like:
ts.TraceEvent(TraceEventType.Error, <<ID>>, <<Object/string to log>>);

Example:

ts.TraceEvent(TraceEventType.Error, 333, ”This is an Error");

Overview Tracing / logging

Program TraceSource

XXTraceListener

YYTraceListener

AAFilter

BBFilter

SourceSwitch

Trace Filters

• TraceSource can take filters to configure the individual
TraceListener

• Types of filters:
– SourceFilter (build in) -- for configure which part of the

system to log

– EventTypeFilter (build in) -- for configure level of logging messages to
log

– Customer Created Filters

• Example of filter setting:
xxListener.Filter = new EventTypeFilter(SourceLevels.All);

Make your own Filter

• You can design and implement you own Filter by
Inherits from TraceFilter and override:

– public override bool ShouldTrace(

TraceEventCache cache, -- some metadata
string source, -- where does it come from
TraceEventType eventType, -- the level error,warning…
int id, -- some id
string formatOrMessage, -- the text string – can be null
object[] args, -- additional inf.
object data1, -- additional inf.
object[] data) -- additional inf.

Special TraceListener - EventLog
• The EventLogTraceListener will log to the system Event

Log System (use EventViewer to lookup the logging)

• Need to get NuGet Package (System.Diagnostics.EventLog)

• Example:
TraceListener logListener = new EventLogTraceListener("Application");

ts.Listeners.Add(logListener);

Demo

. . . then exercise.

XML intro

What is XML?

• XML stands for EXtensible Markup Language

• XML is a markup language much like HTML

• XML was designed to carry data, not to display data

• XML tags are not predefined. You must define your own tags

• XML is designed to be self-descriptive

• XML is a W3C Recommendation

The Difference
Between XML and HTML

• XML is not a replacement for HTML.

• XML and HTML were designed with different goals:

– XML was designed to transport and store data, with focus
on what data is. (like model)

– HTML was designed to display data, with focus on how
data looks. (like view)

Therefore - HTML is about displaying information, while
XML is about carrying information.

The Difference
Between XML and JSON

• Both for carrying information (share data).

• Json is shorter in bytes

• XML can be validated

• Json often used in REST-services

• XML often used in configuration

XML Example

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this Weekend!</body>

</note>

{"Note":{"To":"Tove","From":"Jani","Heading"

:"Reminder","Body":"Don\u0027t forget me

this Weekend!"}}

XML Simplifies Data Sharing

• XML data is stored in plain text format.

• Meaning it is software- and hardware-independent.

• With XML, data can easily be exchanged between
incompatible systems.

XML Documents Form a Tree Structure

• XML documents must contain a root element.
This element is "the parent" of all other elements.
NB! Only one root element are allowed

• The elements in an XML document form a document tree.

• The tree starts at the root.

XML Documents – General structure

• All elements can have sub elements (child elements):

• <root>

<child>

<subchild>.....</subchild>

</child>

<child> // sibling

<subchild>.....</subchild>

</child>

</root>

• Parent elements have children. Children on the same level are
called siblings (brothers or sisters).

Example of XML-dom-tree

The root element in the example is <bookstore>. All <book>
elements in the document are contained within <bookstore>.

The <book>
element itself has
4 children:

<title>,< author>,
<year>, <price>.

XML Syntax Rules – to be wellformed

• All XML Elements Must Have a Closing Tag

• XML Tags are Case Sensitive

• XML Documents must have one Root Element

• XML Elements must be Properly Nested

• XML Attribute values must be Quoted

• Entity References

XML Elements vs. Attributes
• Take a look at these two examples:

<person sex="female"> // Attribute

<firstname>Anna</firstname> // Sex inf. to ‘person’-tag

<lastname>Smith</lastname>

</person>

• <person> // Element

<sex>female</sex> // Sex separate tag

<firstname>Anna</firstname>

<lastname>Smith</lastname>

</person>

• Both examples provide the same information.

• There are no rules about when to use attributes and when to use elements.
But in general use elements except for metadata.

Valid XML Documents

• A "Valid" XML document is

– "Well Formed" XML document

– Conforms to a Document Type Definition (DTD): (or schema)

• <?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to><from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

• The DOCTYPE declaration in the example above, is a reference to an
external DTD file.

XML DTD (ex: note.dtd)

• The purpose of a DTD is to define the structure of an XML
document. It defines the structure with a list of legal
elements:

• <!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

• xxx+ ->1-many xxx* -> 0-many xxx? -> 0-1

• , -> and | -> or

XML Schema

• W3C supports an XML based alternative to DTD
called XML Schema:

• <xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Reading XML files in C#

Example:

• To open config-file use:

XmlDocument configDoc = new XmlDocument();
configDoc.Load(“ << configFileName >> “);

• To read a port number:

XmlNode xxNode =
configDoc.DocumentElement.SelectSingleNode("<NameO
fTag>");
if (xxNode != null)
{

String xxStr = xxNode.InnerText.Trim();
Int xx = Convert.ToInt32(xxStr);

}

Demo

. . . then exercise.

