
Design Pattern
(OOProg chapter 3)

.

14.03.2024

Peter Levinsky, IT Roskilde



• S Single Responsibility -> High cohesion for classes

• O Open / Closed -> open for extensions

• L Liskov Substitution 

-> Subclasses ‘same’ behaviour e.g. pre- and post conditions

• I Interface Segregation -> Separate interfaces (minimize)

• D Dependency Injection/Inversion -> parameter, methods, objects

1

4

.

0

3

.

2

2



1

4

.

0

3

.

2

3

Name – common term – a technical term/concepts among programmers

Problem – description of the problem

Solution – Only! A Design solution (UML diagrams)



1

4

.

0

3

.

2

4

• Information Expert

• Creator Pattern

• Controller

• Low Coupling

• High Cohesion



1

4

.

0

3

.

2

5

• Singleton - only one object

• Controller - PageModel

• Template - reuse og code

• State - different behaviour depending on states



1

4

.

0

3

.

2

6

. . .



1

4

.

0

3

.

2

7

• Creational Patterns
• Factory, Abstract Factory, Singleton …

• Structural Patterns
• Adaptor, Proxy, Facade, Decorator …

• Behavioral Patterns
• Observer, Template, Strategy, State …

• Concurrency patterns
• Monitor, Lock, Thread Pool



1

4

.

0

3

.

2

8

• Factory

• Problem: Who should be responsible for creating objects when there are special considerations, 

such as complex creation logic, a desire to separate the creation responsibilities for better cohesion, 

and so forth?

• Solution:

Static method



1

4

.

0

3

.

2

9

• Singleton

• Problem: Exactly one instance of a class is allowed.

• Solution:



1

4

.

0

3

.

2

10

One set of factory

Another set of factory



• Demo af Factory, Singleton og Abstract Factory

1

4

.

0

3

.

2

11



1

4

.

0

3

.

2

12

• Adaptor

• Problem: How to resolve incompatible interfaces, or provide a stable interface to 

similar components with different interfaces?

• Solution:



1

4

.

0

3

.

2

13

• Facade

• Problem: A common, unified interface to a disparate set of implementations or 

Interfaces such as within a subsystem is required.

• Solution:



1

4

.

0

3

.

2

14

• Proxy

• Problem: How to 

provide a 

placeholder for 

another object to 

control access to it.

• Solution:



1

4

.

0

3

.

2

15

• Decorator

• Problem: How 

to Attach 

additional 

responsibilities 

to an object 

dynamically

• Solution:

1



1

4

.

0

3

.

2

16

• Composite

• Problem: How to 

represented a part-

whole hierarchy so 

that clients can treat 

part and whole 

objects uniformly.

• Solution:



• Adaptor, Proxy, Facade, Decorator, Composite

• Training: Exercises 3.1 (Factory), 3.2(Abstract Factory), 3.3 (Adaptor)

• Mandatory Assignment

1

4

.

0

3

.

2

17



1

4

.

0

3

.

2

18

• Observer

Problem: How to handle different kinds of subscriber objects are

interested in the state changes or events of a publisher object

• Solution:



1

4

.

0

3

.

2

19

• Observer - the C# way of doing it

To be Observered

Class XX : INotifyPropertyChanged

{

. . .

// Attach, Deattach

public event PropertyChangedEventHandler PropertyChanged;

// notify

protected virtual void OnPropertyChanged(string propertyName)

{

PropertyChanged?.Invoke(this, 

new PropertyChangedEventArgs(propertyName));

}

}

The one that Observe

…

XX x = new XX();

// Register as observer

x.PropertyChanged += Update;

….

protected void Update(object sender, 

PropertyChangedEventArgs arg)

{

. . .

}



1

4

.

0

3

.

2

20

• Template (seen at the TCP server generalisation)

Problem: How to reuse a skeleton of an algorithm in an operation

• Solution:

Abstract methods



1

4

.

0

3

.

2

21

• Strategy

Problem: How to interchange part of algorithm dynamically 

• Solution:



1

4

.

0

3

.

2

22

• State (seen at the snake game)

Problem: How to Allow an object to alter its behaviour when its internal state changes

• Solution:

1



• Demo of Observer, Template og Strategy

• Training: Exercises: 3.7 (Composite), 3.9 (Strategy)

• And of course the Mandatory Assignment

1

4

.

0

3

.

2

23


