
.

25.03.2021

Peter Levinsky IT, Roskilde

2

5

.

0

3

.

2

• CPU-bound operations

• I/O-bound operations

2

5

.

0

3

.

3

Thread t = new Thread (-- delegate Method --);

t.Start();

…

t.Join(); // wait here until t is completed

? Delegate Method

2

5

.

0

3

.

4

class ThreadTest

{

static bool done; // Static fields are shared between all threads

static void Main()

{

new Thread (Go).Start();

Go();

}

static void Go()

{

if (!done) { done = true; Console.WriteLine ("Done"); }

}

}

2

5

.

0

3

.

5

Levels of parallelism:

• Thread -- Basic structure for parallelism (in most programming languages)

• Task -- C# smooth variant i.e. Task.Run(<<delegate method>>)

• Parallel.Invoke -- Can start several threads (continues after all thread is completed)

• Parallel.For/Foreach -- Can start several threads in a loop (continues after all thread is completed)

• Plinq -- Can execute a Linq expression in parallel

2

5

.

0

3

.

6

• Use of built in features async / await

• Where to use

• I/O-bound operations – Like network, accessing files etc.

• How to use

• Method is async – like public async Task<int> DoSomethingAsync()

• In method body … somewhere

await ….. return anInteger;

2

5

.

0

3

.

7

What is Async / Await ?

• The use of Async / Await is not directly the same as a thread / task !

• But the program will wait at ‘await’ until this job is done

• And you can continue do other stuff in between

e.g. show information about ‘work in progress’ (Jacob Nielsen – System status)

Task<List<Picture>> pictures = await ReadPicturesFromFile(“somefile.pic”);

Status = “Getting pictures …”; // set system status

foreach(var pic in pictures.Result){

…

}

2

5

.

0

3

.

8

Opgaver C#Exercises Prog.3.6+3.8

2

5

.

0

3

.

9

Race Conditions:

2

5

.

0

3

.

10

Common area (shared data) between several threads

Like ‘done’ in ThreadTest

2

5

.

0

3

.

11

Thead1

Thread2

A. Mutal Exclusion with busy waiting

while (x != 0); // do nothing though loop again

Petersons solution / TSL in machine language

B. Sleep and wakeup

i. Lock

ii. Semaphores

iii. Mutex (binary semaphores)

iv. Monitors

2

5

.

0

3

.

12

Lock

Ensure only one thread in block

Semaphore

Down for enter – count down by one if possible otherwise wait

Up for leave – increment by one if not reach roof (counting e.g. max 10)

C# waitOne, Release

Mutex

General like semaphore where roof is one

C# waitOne, ReleaseMutex

Monitor

The monitor are the critical section

Variable => conditions || Wait / signal

C# Enter / Exit

2

5

.

0

3

.

13

• The Dining Philosophers Problem
Need two resources

2

5

.

0

3

.

14

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Philosophers do

Think

Eat

2

5

.

0

3

.

15

#define N 5/* number of philosophers */

void philosopher(int i)/* i: philosopher number, from 0 to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */

take_fork(i); /* take left fork */

take_fork((i+1) % N);/* take right fork; % is modulo operator */

eat(); /* yum-yum, spaghetti */

put_fork(i); /* Put left fork back on the table */

put_fork((i+1) % N);/* put right fork back on the table */

}

}

2

5

.

0

3

.

16

Opgaver C#Exercises XXXX

2

5

.

0

3

.

17

