
Software Testing

.

04.02.2021

Peter Levinsky IT Roskilde

0

4

.

0

2

.

2

• To demonstrate to the developer and the customer that the software

meets its requirements.

=> leads to validation testing

• To discover situations in which the behavior of the software is incorrect,

undesirable or does not conform to its specification.

=> leads to defect testing

0

4

.

0

2

.

3

• Verification: (testing)

"Are we building the product right”.
• The software should conform to its specification.

• Validation: (checking)

"Are we building the right product”.
• The software should do what the user really requires.

0

4

.

0

2

.

4

0

4

.

0

2

.

5

0

4

.

0

2

.

6

0

4

.

0

2

.

7

• Validation of the concepts and requirements
e.g. Are the domain model right? The use stories? (the users)

• Validation of the design
e.g. design class diagrams and design sequence diagrams

(Reviews, Technical walkthrough by the project team)

• Component Verification
e.g. unit test and test cases (implementer)

• System and integration validation
e.g. system/integration test

• Operation Verification
e.g. acceptance test

0

4

.

0

2

.

8

• Black box

• Look at methods (system part) as a closed box

• Know only interface

• White box

• Look inside the methods (system part)

• Look at all possible path through the methods

0

4

.

0

2

.

9

• The system code is ‘unknown’ -> a black box

• Look only at the methods signatures

• Testing all kind of possible input and output

• In C# create a Unit Test

0

4

.

0

2

.

10

0

4

.

0

2

.

11

0

4

.

0

2

.

12

• Create a test unit project,

• Add reference to the project,

• Remember to have the class to be tested public.

• Make a test method for each test case

0

4

.

0

2

.

13

• Annotations

• [TestClass] : set up the test

• [TestMethod] : This is a test method to be run

• [TestInitialize] : Run this before each test method

• [ClassInitialize] : Run this before the test starts

• Testing verification

• Assert.AreEqual(expected, actual)

• Assert.IsTrue(actual)

• Assert.ThrowsException<XXException>(()=> -- act --)

0

4

.

0

2

.

14

• Arrange

• Set up the test (part could be in test TestInitialize)

• Give all input the testing data

• Give expected data the expected values

• Act

• Run the method

• Assert

• Check if the test have succeed

0

4

.

0

2

.

15

[TestMethod]

public void TestMethod1()

{

// Arrange

Person p = new Person(”SomeName”, ”SomePhone”, ”SomeAddress”);

String expectedPhone = ”SomePhone”;

//Act

String actualPhone = p.Phone; // do the action – here just read a property

//Assert

Assert.AreEqual(expectedPhone, actualPhone);

}

0

4

.

0

2

.

16

