Security

Peter Levinsky, Roskilde, Datamatiker

10.11.2021

Cryptography

- Why Cryptography
- Symmetric Encryption
 - Key exchange
- Public-Key Cryptography
 - Key exchange
 - Certification

Why Cryptography

- General Security Goal
 - Confidentiality
 - Message Integrity
 - End-point Authentication
 - Operational security

Potentially Threats

- Eaves dropping
- Modification, insertions, deletion
- Masquerade
- Playback
- Man-in-a-middle-attack
- DDoS (ie. SYN-flooding)

Cryptography - general

- To send messages over a network,
 which is unable to understand for a third part
- General technique:
 - Plain text
 - Encode (algorithm + key)
 - Cipher text (send over the network)
 - Decode (algorithm + key)
 - Plain text

Cryptography - coding

- Old days simple letter transformation
 e.g. c for an a and d for a b and so on
 i.e. ape -> crg
- To day
 - Symmetric key
 - Public-private keys

How to break encryption

- Force brute
 - Try combinations
 - Ciphertext-only attack try all
 - Known-plaintext Attack know few word in text
 - Chosen-plaintext Attack know one full text

- Using the same key to encode and decode
- Which goal are fulfilled?
 - Confidentiality
 - Authentication
 - Integrity
 - Operational security
 - -Confidentiality yes
 - Authentication yes
 - Integrity yes
 - Operational security no

- Implementations:
 - DES (Data Encryption Standard) most known (round 4 min) today modified to triple DES key length 64bit (3*64 bit)
 - Other IDEA, RC5 to day even 128 bit (round 149 trillion year)

- Key exchange:
 - Problem to exchange the key
 - we can not send it with a mail
 - then it would not be secret any longer
 - Using a Key Distribution Center (KDC)
 - I have an agreement with the KDC and with this an secret key.
 - So have all I communicate with.

- Windows use Symmetric key in an implementation called Kerberos:
 - All like KDC but you get grant (a key) to a resource for a certain time (all called a ticket)

- Using the different keys to encode and decode
- You always have a pair of keys a public key and a private key
- If you encode with a public key you must decode with a private key
- If you encode with a private key you must decode with a public key

Which goal are fulfilled from A to B (B public Key)?

- Confidentiality
- Authentication
- Integrity
- Operational security

```
-Confidentiality – yes
```

- -Authentication no
- Integrity no
- Operational security no

Which goal are fulfilled from A to B (A private Key)?

- Confidentiality
- Authentication
- Integrity
- Operational security
 - -Confidentiality no
 - Authentication yes
 - Integrity yes
 - Operational Security no

Can we fulfilled both

- Confidentiality and
- Authentication
- Integrity

?

YES – encode with A private key and then with B public key i.e. twice

- <u>Implementations</u>:
 - RSA most known key length recommended 1024bit (2048bit)
 - (512 bit brute force approx. 5 month)

- Key exchange:
 - Problem to exchange the key
 - public key are public to everyone
 - But do we believe the sender of the key
 - Using Certification
 - I believe in some Certification Authorities e.g. VeriSign, Thrust, (in DK TDC)
 - get the public key from one of those trusted third part companies.

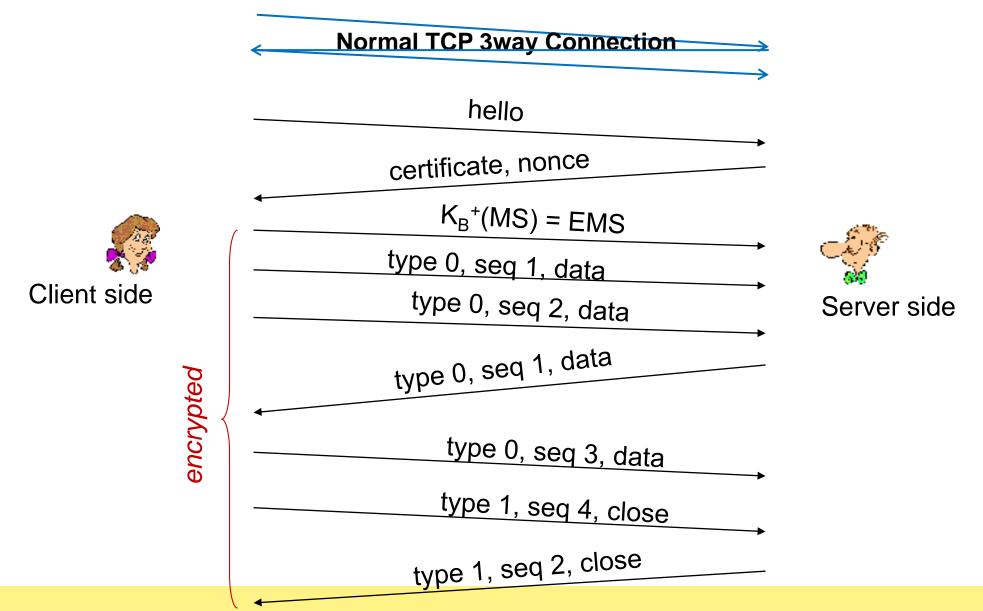
- To fulfilled the goal you must encode 2 times (A private and B public)
- A more easy way is to create a Message Digest (MD) a sort of a checksum
- And this 'checksum' are encoded with A's private key (Digital Signature). Then the whole message + the MD are encoded with B's public key

- For authentication :
 - Message Authentication Code (MAC)
 - Both sides shared secret (s)
 - Send m + H(m+s)
 - Check m+s hached == H(m+s)
 - Fill with Nonsens

Cryptography Mixed

- Using asymmetric keys to exchange a symmetric key
- Then use this symmetric key for rest of this session.

This increase the speed of encryption and decryption.


Secure connections examples

Application Layer	Email – Pretty Good Privacy
Transport Layer	Secure Socket Layer
Network Layer	Ipsec (VPN)
DataLink Layer	Wifi – WEP (not part of curriculum)
Physical Layer	N/A

Secure Transport layer - Secure Socket Layer (SSL)

- SSL support Confidential (HTTPS is based on SSL)
- SSL can support Integrity
- Four keys (part of EMS Encrypted Master Secret):
 - K_c = encryption key for data sent from client to server
 - M_c = MAC key for data sent from client to server
 - K_s = encryption key for data sent from server to client
 - M_s = MAC key for data sent from server to client

Secure Transport layer - Secure Socket Layer (SSL)

