
ZIBAT, Computer Science 2017.09.27/Michael Claudius

Cods:\Opgaver_alm\SocketHttpStart.doc

COMPUTING SUBJECT: Socket programming

TYPE: Assignment

IDENTIFICATION: SocketHttpStart

COPYRIGHT: Michael Claudius

 Revised by Jamshid Eftekhari&Michael Claudius

LEVEL: Intermediate

TIME CONSUMPTION: 1-3 hours

EXTENT: 50 lines

OBJECTIVE: TCP-sockets concurrent style

 Http command GET

PRECONDITIONS: Computer Networks Ch. 2.7, 2.2

COMMANDS:

ZIBAT, Computer Science 2017.09.27/Michael Claudius

Cods:\Opgaver_alm\SocketHttpStart.doc

IDENTIFICATION: SocketHttpStart

The Mission

We are going to explore how to interpret Http-command using a concurrent server.

Precondition

You have done the assignment SocketConcurrent and have a running concurrent solution

Useful C# links

 http://blogs.msdn.com/b/pfxteam/archive/2010/06/13/10024153.aspx

 https://msdn.microsoft.com/en-us/library/ms228388.aspx

 System.IO.StreamReader

 System.Net.Sockets.NetworkStream

 The method String.split(...), the first and simplest example is most important.

Now we will extend the server program to interpret the messages from the client.

Assignment 0. Project: HttpStart

Create a new project HttpStart and copy and paste the classes from SocketConcurrent into this

project.

Assignment 1. Model class: ServiceEcho

If you have not done it yet, then extend the doIt method to send back “Server stopped” and then break

the loop if it receives the message “STOP”.

If you are lacking time then skip this for now.

Assignment 2 Model class: ServiceEcho

The server must now be able to understand more complicated messages; i.e. if a message is a Http-

request this shall be recognized. Extend the doIt() method with the following responsibility:

If the received message (request-line), looks like “GET /somefile.html HTTP/1.1”

then extract the URI (middle) part of the request line (/somefile.html in this case) and

include the URI in the response to the client.

Use your old TcpEchoClient program to test it.

Tip: Utilize the String.split() method to split the request-line.

Assignment 3 Model class: ServiceEcho

Still in the doIt() method change the response of a GET-request to look exactly like the first lines of

Http-response without any data:

 HTTP/1.1 200 OK\r\n

Content-Type: text/html\r\n"

 Connection: close\r\n"

http://blogs.msdn.com/b/pfxteam/archive/2010/06/13/10024153.aspx
https://msdn.microsoft.com/en-us/library/ms228388.aspx
http://msdn.microsoft.com/en-us/library/system.io.streamreader(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.net.sockets.networkstream(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms228388.aspx
https://msdn.microsoft.com/en-us/library/ms228388.aspx

ZIBAT, Computer Science 2017.09.27/Michael Claudius

Cods:\Opgaver_alm\SocketHttpStart.doc

Finally add a line with some data like “Hello client”.

As several lines are now written to the client, the client-program must be changed to read an

unknown number of messages from the server.

Assignment 4 Browser: Browser as a client

Start the server and then try to see the response in a browser.

To let the browser act as a client you use the url:

http://localhost:6789/somefile.html

No luck? Think carefully about the response format and \r\n.

Furthermore, how does the browser know that there is no more from the server?

Assignment 5: File handling

Make a text file somefile.html with some text lines like:
 Hello Client

 Hello World

Extend the doIt() method with the following responsibility:

If the received message (request-line), looks like “GET /somefile.html HTTP/1.1”

Then first send the header then open the file, read the content (line by line) and print

out and send each line to the client.

Test it with the client and the browser.

IF you have problems with this assignment look at the Appendix A, next page.

One issue is that this program can only handle text-files.

Assignment 6: File handling

Change the DoIt method to utilize

 The method Stream.CopyTo(...)

Which is a byte stream and thus pictures can also be handled.

https://msdn.microsoft.com/en-us/library/system.io.stream.copyto(v=vs.110).aspx

ZIBAT, Computer Science 2017.09.27/Michael Claudius

Cods:\Opgaver_alm\SocketHttpStart.doc

Appendix A

In assignment 5 you are asked that the server should send the contents of the resource (read "file")

from the requests URI.

In the previous assignments of the server you extracted the URI from the request line. Now you

must define where on the servers disk to look for this file. The place to start looking is called the

RootCatalog.

Some examples

 When you request a file like http://www.someserver.com/file.html the file is found in rootCatalog/file.html

 When you request a file like http://www.someserver.com/directory/file.html is found in

rootCatalog/directory/file.html

Declare your root catalog like private static readonly string RootCatalog = "c:/temp";

Useful C# API:

 System.IO.FileStream

 The method Stream.CopyTo(...)

Make sure the file stream is closed properly in a using or finally statement.

Then you can read the request send from the browser to the server and hopefully se the file

vizualized.

http://www.someserver.com/file.html
http://www.someserver.com/directory/file.html
https://msdn.microsoft.com/en-us/library/system.io.filestream(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.stream.copyto(v=vs.110).aspx

