
COMPUTING SUBJECT: Restful ASP.Net Core-services

TYPE: Assignment

IDENTIFICATION: RestService#6

COPYRIGHT: Peter Levinsky & Michael Claudius

LEVEL: Medium

TIME CONSUMPTION: 1½-2 hours

EXTENT: 120 lines

OBJECTIVE: Restful services using a Database

PRECONDITIONS: Rest service theory. Http-concepts

 Computer Networks Ch. 2.2

COMMANDS:

IDENTIFICATION: RestService#6 / PELE with kindly respect and inspiration from MICL

Overall Purpose
The overall purpose for the group of ‘RestService’ assignments is to be able to provide and

consume restful ASP.Net Core web services, to prepare the ‘RestService’ to be published in

Azure, including testing the service and finally to setup the ‘RestService’ to be consumed from

a browser (e.g. using Typescript) i.e. support CORS.

The whole group of assignments consist of 7 steps:

1. A simple REST Service with CRUD.

2. More advanced and complex URI’s.

3. Testing a REST Service.

4. Adding Support for CORS to the REST Service

5. Consuming a REST service from a C# Console application

6. A REST Service using a database (this assignment)

Background Material:

The HTTP protocol: See Computer Network chap 2 pp. 111-136

Note of REST (Peter Levinsky): See NetHttpNote.pdf

Oswago Universitet: RESTful Service Best Practices: Recommendations for Creating Web

Services: See http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf

Usefull tools (Postman & Fiddler): See Tools.htm (tool #3 & tool #4)

Helpful link:

SQL references: https://www.w3schools.com/sql/default.asp

DBContext: https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-

api?view=aspnetcore-3.1&tabs=visual-studio#add-a-database-context-2

Note (Anders Børjesson): REST controller using Entity Framework:

https://docs.google.com/document/d/e/2PACX-

1vTlIdWBWVYpZF4W9MEtH6vbtR19VwtILi9n_866-

lK_LR6yIVhMk0FDQpMhPZOus8zrJfkImMXJTbtX/pub

file:///M:/uv/2021e-tek/exercises/REST/RESTService1-simple-CRUD.pdf
file:///M:/uv/2021e-tek/exercises/REST/RESTService2-advanced.pdf
file:///M:/uv/2021e-tek/exercises/REST/RESTService3-Testing.pdf
file:///M:/uv/2021e-tek/exercises/REST/RESTService4-Azure-Cors.pdf
RESTService5-ConsumingRest.pdf
NetHttpNote.pdf
http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf
../ch2-Tools.htm
https://www.w3schools.com/sql/default.asp
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-3.1&tabs=visual-studio#add-a-database-context-2
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-3.1&tabs=visual-studio#add-a-database-context-2
https://docs.google.com/document/d/e/2PACX-1vTlIdWBWVYpZF4W9MEtH6vbtR19VwtILi9n_866-lK_LR6yIVhMk0FDQpMhPZOus8zrJfkImMXJTbtX/pub
https://docs.google.com/document/d/e/2PACX-1vTlIdWBWVYpZF4W9MEtH6vbtR19VwtILi9n_866-lK_LR6yIVhMk0FDQpMhPZOus8zrJfkImMXJTbtX/pub
https://docs.google.com/document/d/e/2PACX-1vTlIdWBWVYpZF4W9MEtH6vbtR19VwtILi9n_866-lK_LR6yIVhMk0FDQpMhPZOus8zrJfkImMXJTbtX/pub

This Assignment: RestService#6

Purpose

The purpose of this assignment is to refactor your REST Service so it can use a Database for

persistence instead of a static list.

Mission

You are to refactor your implementation of the controllers to use Database. You will only work

with one simple table to hold data i.e. no foreign key and no talk of 3th Normal Form.

Assignment 1: Prepare Solution for Database persistency

a. Open your REST-service project (more correctly solution). You properly have a

reference to your Model Library (see assignment 1) otherwise create a reference to

your Model Library

b. Alternative create a new Solution and add the model library reference to the project.

c. In Azure create a Table ‘Item’ with the properties:

 int Id; // i.e. Id int not null primary key

 string Name; // i.e. Name nvarchar(35) not null

 string ItemQuality; // i.e. ItemQuality nvarchar(35) not null

 double AmountQuantity; // i.e. Quantity float not null

 You can make the Id generate automatically by using identity keyword

Assignment 2: Create a Utility Class for Database connections

a. To implement these methods you need the connection string (get this string from

database in Azure):

 Show the connection strings and copy the one for ADO.Net, though you need to fill in

 your user name and password!!

 Use a simple trick to prevent my connection string (including username + password)

 to be uploaded to a public GitHub repository.

 Keep the connection string in a separate file (here called Secrets).

 Mention the Secrets file in the .gitignore file in your projects.

 Simply add a single line to the .gitignore file

 Secrets.cs

 Notice that the .gitignore file is not created until you add Git version control to your project.
 Now Git will ignore the Secrets file.

Make the class Secrets in the model folder.

public class MySecrets

{

 public const string ConnectionString =

 "Connection string including user ID + password.

 Can be obtained from portal.azure.com";

}

b. Install a Nuget Package to support SQL enitity framework

Install the NuGet package ‘Microsoft.EntityFrameworkCore.SqlServer’

Create the connection between your REST and the Database.

In the model folder create a class ‘ItemContext’, this class must extends the DBContext

class like:

public class ItemContext : DbContext

{

 public CarContext(DbContextOptions<ItemContext> options) :

 base(options)

 {

 }

 public DbSet<Item> Items { get; set; }

}

If you have more tables in your database you can make more DbSet<T> objects in the

Context class.

For further reading see: Add to the TodoContext database context

c. Register your Database Context in the Startup-file.

You are now to register your Database context in the startup -> configureServices, just

like you did at 2nd semester where you registered different singletons.

services.AddDbContext<ItemContext>(opt =>

 opt.UseSqlServer(MySecrets.ConnectionString));

https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-3.1&tabs=visual-studio#add-the-todocontext-database-context-2

d. Create the ‘ManageItemsDB’ class

In the folder (managers from exercise RESTservice#1) create a class

‘ManageItemsDB’ which also implements the IManageItem interface.

Like:
 private readonly ItemContext _context;

 public ManageItemsDB(ItemContext context)
 {
 _context = context;
 }

 public IEnumerable<Item> Get()
 {
 return _context.Items.ToList();

 }

 public bool Create(Item value)
 {
 try
 {
 // if automatic generated ID insert following line

 // value.Id = 0;
 _context.Items.Add(value);
 _context.SaveChanges();
 return true;
 }
 catch (Exception e)
 {
 return false;
 }

 }
 . . .

Assignment 3: Refactor the Controller class

a. Refactor your ItemsController to use this ManageItemsDB class, by calling the

appropriated methods.

b. Support context injection by

public ItemsController(ItemContext context){
 mgr = new ManageItemsDB(context);
}

a. Run your component unit test and your integration test

b. If succeed publish the refactored REST service in Azure

By now you are ‘full flying’ REST service implementer

and can do other REST services

