
COMPUTING SUBJECT: Restful ASP.Net Core-services

 For .Net

TYPE: Assignment

IDENTIFICATION: RestService#4

COPYRIGHT: Peter Levinsky & Michael Claudius

LEVEL: Medium

TIME CONSUMPTION: 2-2½ hours

EXTENT: 50-60 lines

OBJECTIVE: Publishing in Azure and adding supporting CORS

to the Restful services

 version .Net

PRECONDITIONS: Rest service theory. Http-concepts

 Computer Networks Ch. 2.2

COMMANDS:

IDENTIFICATION: RestService#4 / PELE with kindly respect and inspiration from MICL

Overall Purpose
The overall purpose for the group of ‘RestService’ assignments is to be able to provide and

consume restful ASP.Net Core web services, to prepare the ‘RestService’ to be published in

Azure, including testing the service and finally to setup the ‘RestService’ to be consumed from

a browser (e.g. using Typescript) i.e. support CORS.

The whole group of assignments consist of 7 steps:

1. A simple REST Service with CRUD.

2. More advanced and complex URI’s.

3. Testing a REST Service.

4. Adding Support for CORS to the REST Service

(this assignment)
5. Consuming a REST service from a C# Console application.

6. A REST Service using a database

Background Material:

The HTTP protocol: See Computer Network chap 2 pp. 111-136

Note of REST (Peter Levinsky): See NetHttpNote.pdf

Oswago Universitet: RESTful Service Best Practices: Recommendations for Creating Web

Services: See http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf

Usefull tools (Postman & Fiddler): See Tools.htm (tool #3 & tool #4)

Note: https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-

Origin-Resource-Sharing-for-REST-APIs/#

file:///M:/uv/2021e-tek/exercises/REST/RESTService1-simple-CRUD.pdf
RESTService2-advanced.pdf
RESTService3-Testing.pdf
NetHttpNote.pdf
http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf
../ch2-Tools.htm
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/

This Assignment: RestService#4

Purpose

The purpose of this assignment is to publish your REST service in Azure and to refactor your

REST Service so it can manage call from javascript-pages in a browser in other words to

support CORS.

Mission

You are to upload your REST service up to an AZURE App-service.

You are to design and implement CORS (Cross Origin Resource Sharing). There are three

different way to design and implement CORS, they varying in the granularity of access control.

1. Publishing the REST service.

2. GlobalWare, Quick, but not so configurable and UNSECURE in Azure

(do NOT work when using localhost!)

3. MVC, Specific setup CORS for each URI.

Now you have tested your REST Service functional as well as an integration, so it is ready to

be published to the cloud – at Zealand meaning Microsoft Cloud ‘Azure’.

Assignment 1: Publish in Azure

To publish in Azure you have to create an app-service in Azure i.e. make a virtual machine

with a web-server (Microsoft IIS-server). Then to upload (publish) your REST-Service. You

need to make a quick fix to support typescript (to be precise javascript) accessing your REST

service

All this require you have an Azure account – see https://helpdesk.zealand.dk/hc/en-

us/articles/360023571932-Microsoft-Imagine for more information.

a. Go to your portal of Azure (https://portal.azure.com/) and log in.

You must create a new APP-service ‘ItemService’

Step 1 – Add Resource group – if you do not already have one – then go to step 2

Naming resource group like ‘pele-zealand-dk-resourceGrp’

Resouce detail choose ‘North Europe’

https://helpdesk.zealand.dk/hc/en-us/articles/360023571932-Microsoft-Imagine
https://helpdesk.zealand.dk/hc/en-us/articles/360023571932-Microsoft-Imagine
https://portal.azure.com/

Step 2 – Add web service

 Choose your resource group from step 1

 Name your web application e.g. like ‘pele-zealand-dk-REST’

 Choose the runtime stack here .Net 5

 Choose region i.e. Noth Europe

 The default size is just fine – keep it that way

Step 3 - Overview of services

Now you are ready for the next step.

b. In Visual Studio open the Solution Explore.

Right-click at the project -> choose publish

Choose Azure

Choose Azure App Service

Choose your APP-Service e.g. ItemService (in example ‘pele-zealand-dk-REST’):

Skip this step.

So that was it. A browser window will open with your RestService running in Azure with a

URL-name like: http:// pele-zealand-dk-REST.azurewebsites.net/.

http://itemservice-pele-easj.azurewebsites.net/index.html

Assignment 2: Support CORS (cross origin resource sharring) – Quick but dirty

To be able to access your REST-service from a javascript application in a browser your

REST-service need to support CORS.

a. Quick solution in Azure

Open the Azure portal https://portal.azure.com/

Open your APP Service that hold your REST Service, it will similar to this:

For Allowed origins insert ‘*’, meaning everything from anywhere.

Remember to save.

Now it’s working in your Azure REST Service.

That was all for now creating the REST service – next step is to consume the rest

service (very similar to what you did at 2 semester)

https://portal.azure.com/

Assignment 3: MVC, Specific setup CORS for each URI

a. First you need a NuGet-package installed; at your project open the NuGet manager

and choose ‘Microsoft.AspNetCore.Cors’ version 2.2.0 to be installed:

and yes … It do take some time

b. In the solution (Solution Explore); Open the file ‘Startup.cs’.

In the ‘ConfigureServices’ method, add the line

services.AddCors(options =>

 {

 options.AddPolicy("AllowSpecificOrigin",

 builder => uilder.WithOrigins("http://zealand.dk").

 AllowAnyMethod().

 AllowAnyHeader()

);

 options.AddPolicy("AllowAny",

 builder => builder.AllowAnyOrigin().

 AllowAnyMethod().

 AllowAnyHeader()

);

 options.AddPolicy("AllowOnlyGetPut",

 builder => builder.AllowAnyOrigin().

 WithMethods("GET", "PUT").

 AllowAnyHeader()

);

 });

c. Still in the Startup.cs – class in the ‘Configure’-method:

Add the lines after ‘app.UseRouting()’

app.UseCors("AllowOnlyGetPut"); // one of the other policy names

 And before ‘app.UseAuthorization()’

d. Now extend this for those services i.e. methods you will have to support CORS.

e. Publish your Rest Service in Azure and try with some of your Typescript applications.

(if you have solved assignment 1, then go back to Azure and remove the ‘*’)

Check your setup of CORS

f. Check that your REST service is correctly configured for CORS using Postman or

Fiddler. Compose a simple request (i.e. GET) with a header-field :

 Origin: { your location e.g. http://easj.dk }

It should return a header field:

 Access-Control-Allow-Origin: {your location e.g. easj.dk}

Or check for more complex request (i.e. PUT, POST, and DELETE) by a preflighted

request using an ‘OPTION’ request.

Origin: {your location e.g. http://easj.dk}

Access-Control-Request-Method: GET

Access-Control-Request-Headers: Authorization, Content-

Type

E.g. (Postman):

The server (with your CORS REST service) should return:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: {your location e.g. easj.dk}

Access-Control-Allow-Methods: GET, PUT

Access-Control-Allow-Headers: Authorization, Content-Type

E.g. (Postman):

What happen if you request access to POST or DELETE ??

More detailed setup

f. For even more detailed CORS setup: In the controller, ItemsController, specify the

policy you want on the controller itself, like:

[Route("api/[controller]")]

 [ApiController]

Still the controller, specify the policy for the methods, suppressing the controller-

policy.

[HttpDelete("{id}")]

// no policy i.e. inherits the controller policy

[HttpPost]

[EnableCors("AllowSpecificOrigin")]

[HttpGet]

[DisableCors] //disable the controller policy

g. After published in Azure, check your new configuration using Fiddler or Postman like

in previous assignment.

h. If you miss to uncheck the https when creating the REST service in assignment 1

do this and the following bullet. Unfortunately you probably get a 301/502 error

security error.

Why?

The issue is that if your project was created it was configured for Https and Fiddler

uses Http-scheme for Azure. Read on…

i. Go to your Azure Portal

1. Open your Web-App project

2. Find Custom domains in the

left scroll-bar

3. Set Https-Only to OFF

4. Click Refresh

Congratulations your REST service can now be used from e.g. a typescript application, the

last step is to provide persistence in your REST service through a Database instead of a

static-list.

