
COMPUTING SUBJECT: Restful ASP.Net Core-services

TYPE: Assignment

IDENTIFICATION: RestService#6

COPYRIGHT: Peter Levinsky & Michael Claudius

LEVEL: Medium

TIME CONSUMPTION: 1½-2 hours

EXTENT: 120 lines

OBJECTIVE: Restful services using a Database

PRECONDITIONS: Rest service theory. Http-concepts

 Computer Networks Ch. 2.2

COMMANDS:

IDENTIFICATION: RestService#6 / PELE with kindly respect and inspiration from MICL

Overall Purpose
The overall purpose for the group of ‘RestService’ assignments is to be able to provide and

consume restful ASP.Net Core web services, to prepare the ‘RestService’ to be published in

Azure, including testing the service and finally to setup the ‘RestService’ to be consumed from

a browser (e.g. using Typescript) i.e. support CORS.

The whole group of assignments consist of 7 steps:

1. A simple REST Service with CRUD.

2. More advanced and complex URI’s.

3. Adding help-pages to the REST Service (Swagger)

4. Testing a REST Service and publish in Azure.

5. Consuming a REST service from a C# Console application.

6. Adding Support for CORS to the REST Service

7. A REST Service using a database (this assignment)

Background Material:

The HTTP protocol: See Computer Network chap 2 pp. 111-136

Note of REST (Peter Levinsky): See NetHttpNote.pdf

Oswago Universitet: RESTful Service Best Practices: Recommendations for Creating Web

Services: See http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf

Usefull tools (Postman & Fiddler): See Tools.htm (tool #3 & tool #4)

Helpful link from 2 semester:

SQL references: https://www.w3schools.com/sql/default.asp

C# SqlConnection reference: https://msdn.microsoft.com/en-

us/library/system.data.sqlclient.sqlconnection(v=vs.110).aspx

C# SqlCommand reference: https://msdn.microsoft.com/en-

us/library/system.data.sqlclient.sqlcommand(v=vs.110).aspx

RESTService1-simple-CRUD.pdf
RESTService2-advanced.pdf
RESTService3-swagger.pdf
RESTService4-Testing-and-Azure.pdf
RESTService5-ConsumingRest.pdf
RESTService6-Cors.pdf
NetHttpNote.pdf
http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf
../ch2-Tools.htm
https://www.w3schools.com/sql/default.asp
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand(v=vs.110).aspx

This Assignment: RestService#7

Purpose

The purpose of this assignment is to refactor your REST Service so it can use a Database for

persistence instead of a static list.

Mission

You are to refactor your implementation of the controllers to use Database. You will only work

with one simple table to hold data i.e. no foreign key and no talk of 3th Normal Form.

You are NOT allowed to use Entity Framework, you must use SQLConnections and

SQLCommands.

Assignment 1: Prepare Solution for Database persistency

a. Open your REST-service project (more correctly solution). You properly have a

reference to your Model Library (see assignment 1) otherwise create a reference to

your Model Library

b. Alternative create a new Solution and add the model library reference to the project.

c. In Azure create a Table ‘Item’ with the properties:

 int Id; // i.e. Id int not null primary key

 string Name; // i.e. Name nvarchar(35) not null

 string Quality; // i.e. Quality nvarchar(35) not null

 double Quantity; // i.e. Quantity float not null

Assignment 2: Create a Utility Class for Database connections

a. In the solution (Solution Exploire); Create a folder e.g. named ‘DButil’.

b. In this folder create a class ‘ManageItems’ with 5 methods:

 public IEnumerable<Item> Get()

 public Item Get(int id)

 public void Post(Item value)

 public void Put(int id, Item value)

 public void Delete(int id)

If you have more methods in your REST service add them as well.

c. To implement these methods you need the connection string (get this string from

database in Azure):

 Show the connection strings and copy the one for ADO.Net, though you need to fill in

 your user name and password!!

 Make a constant with the connection String.

 Make a constant with the sql query e.g.

 private const String GET_ALL = “select * from Items”;

List<Item> liste = new List<Item>();

using (SQLConnection conn = new SQLConnection(connectionString)))

using (SqlCommand cmd = new SqlCommand(GET_ALL, conn)

{

 Conn.Open();

 SqlDataReader reader = cmd.ExecuteReader();

 while (reader.Read())

 {

 Item item = ReadNextElement(reader);

 liste.Add(item);

 }

 reader.Close();

}

return liste;

protected Item ReadNextElement(SqlDataReader reader)

{

 Item item = new Item();

 item.Id = reader.GetInt32(0);

 item.Name = reader.GetString(1);

 item.Quality = reader.GetString(2);

 item.Quantity = reader.GetDouble(3);

 return item;

}

d. Implement all the other methods

Hint: to insert values
GET_ONE = "select * from DemoBooking WHERE Booking_id = @ID";

On the sqlCommand ‘cmd’
cmd.Parameters.AddWithValue("@ID", id);

Assignment 3: Refactor the Controller class

a. Refactor your ItemsController to use this ManageItems class, by calling the

appropriated methods.

b. Run your component unit test and your integration test

c. If succeed publish the refactored REST service in Azure

By now you are ‘full flying’ REST service implementer

and can do other REST services

