
COMPUTING SUBJECT: Restful ASP.Net Core-services

TYPE: Assignment

IDENTIFICATION: RestService#5

COPYRIGHT: Peter Levinsky & Michael Claudius

LEVEL: Medium

TIME CONSUMPTION: 1-1½ hours

EXTENT: 100-130 lines

OBJECTIVE: Consuming the Restful services

PRECONDITIONS: Rest service theory. Http-concepts

 Computer Networks Ch. 2.2

COMMANDS:

IDENTIFICATION: RestService#5 / PELE with kindly respect and inspiration from MICL

Overall Purpose
The overall purpose for the group of ‘RestService’ assignments is to be able to provide and

consume restful ASP.Net Core web services, to prepare the ‘RestService’ to be published in

Azure, including testing the service and finally to setup the ‘RestService’ to be consumed from

a browser (e.g. using Typescript) i.e. support CORS.

The whole group of assignments consist of 7 steps:

1. A simple REST Service with CRUD.

2. More advanced and complex URI’s.

3. Adding help-pages to the REST Service (Swagger)

4. Testing a REST Service and publish in Azure.

5. Consuming a REST service from a C# Console application.

(this assignment)
6. Adding Support for CORS to the REST Service

7. A REST Service using a database

Background Material:

The HTTP protocol: See Computer Network chap 2 pp. 111-136

Note of REST (Peter Levinsky): See NetHttpNote.pdf

Oswago Universitet: RESTful Service Best Practices: Recommendations for Creating Web

Services: See http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf

Usefull tools (Postman & Fiddler): See Tools.htm (tool #3 & tool #4)

RESTService1-simple-CRUD.pdf
RESTService2-advanced.pdf
RESTService3-swagger.pdf
RESTService4-Testing-and-Azure.pdf
NetHttpNote.pdf
http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf
../ch2-Tools.htm

This Assignment: RestService#5

Purpose

The purpose of this assignment is to consume the newly published REST service in azure.

Mission

You are to design and implement a C# console application to consume your REST Service.

Remember your RestService are running on a web-server thereby you need to access the

Service through the HTTP-protocol.

Assignment 1: C# console application

Set up the console application:

a. You can either create a new solution in Visual Studio or a new project in your already

existing solution. But in either case create a .Net Core console application e.g.

named ‘ConsumeRest’.

b. To be able to use the model class Item make a reference to your ModelLib from the

first assignment RestService1

In the same workflow install the NuGet package ‘Newtonsoft.Json’ to be used to

serialise/deserialise json.

c. In the project make a ‘Worker’ class with a ‘Start’ Method, make an instance of the

Worker class in the Main method and call the ‘Start’ method.

Finish the Main method by adding Console.ReadLine(); so you can see the result

before the program close.

Do the work in the Console application:

d. First you are going to consume get all

Make a method in the Worker class:

 public async Task<IList<Item>> GetAllItemsAsync()
 {
 using (HttpClient client = new HttpClient())
 {
 string content = await client.GetStringAsync(URI);

 IList<Item> cList =
 JsonConvert.DeserializeObject<IList<Item>>(content);
 return cList;
 }
 }

 Where URI is the path to your REST Service

 e.g. ’ http://itemservice-pele-easj.azurewebsites.net/api/localItems’

 Make a call in the start method of this method and print out the list of Items.

RESTService1-simple-CRUD.pdf

e. Create e new method to get one item with the signature:

public async Task<Item> GetOneItemsAsync(int id)

Print out one item in the start method.

f. Create separated methods for PUT, POST and DELETE.

For PUT and POST you need to send a json-encoded string of an Item-object.

Hint:

String jsonStr = JsonConvert.SerializeObject(newItem);

 StringContent content =
 new StringContent(jsonStr, Encoding.UTF8, "application/json");

So now you can create a REST Service provider and a REST Service Consumer

That’s good.

