XML intro

What is XML?

XML stands for EXtensible Markup Language

XML is a markup language much like HTML

XML was designhed to carry data, not to display data

XML tags are not predefined. You must define your own tags
XML is designed to be self-descriptive

XML is a W3C Recommendation

The Difference
Between XML and HTML

« XML is not a replacement for HTML.

XML and HTML were designed with different goals:

— XML was designed to transport and store data, with focus
on what data is. (like model)

— HTML was designed to display data, with focus on how
data looks. (like view)

Therefore - HTML is about displaying information, while
XML is about carrying information.

XML Does not DO Anything

XML was created to structure, store, and transport
information.

The following example
is a note to Tove from Jani, stored as XML:

<note>

<to>Tove</to>

<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this Weekend!</body>
</note>

The note above is quite self descriptive. It has sender and

receiver information, it also has a heading and a message
body.

But still, this XML document does not DO anything.

XML Simplifies Data Sharing

In the real world, computer systems and databases contain
data in incompatible formats.

XML data is stored in plain text format. This provides a
software- and hardware-independent way of storing and
exchanging data.

This makes it much easier to create data that different
applications can share.

XML Simplifies Data Transport

With XML, data can easily be exchanged between
incompatible systems.

One of the most time-consuming challenges for developers is

to exchange data between incompatible systems over the
Internet.

Exchanging data as XML greatly reduces this complexity, since
the data can be read by different incompatible applications.

XML Documents Form a Tree Structure

e XML documents must contain a root element. This element is
"the parent" of all other elements.

e The elements in an XML document form a document tree. The
tree starts at the root and branches to the lowest level of the
tree.

XML Documents - example

All elements can have sub elements (child elements):

<root>
<child>
<subchild>..... </subchild>
</child>
</root>

The terms parent, child, and sibling are used to describe the
relationships between elements.

Parent elements have children. Children on the same level are
called siblings (brothers or sisters).

Example of XML-dom-tree

Foot elemeant:

<hookstore=
Farent
Child
Atribute: Elerment: Attribute:
*lang” <hook= *category”
Elernent: Elerment: Elernent: Elenjerwt:
<title= <author= Zyears ZRrice >
o
Siblings
Text: Tex=t: Text: Text:
Everyday Italian Glada De 2005 30.00

Laurentiis

<bockstores

<book category="COOKING">
<title lang="en">Everyday Italian</titlex>
<author>Giada De Laurentiis</author>
<year>2005</yvear>
<price>30.00</price>

</book>

<book category="CHILDREN">
<title lang="en">=Harry Potter</title=>
<author>Jd K. Rowling</author=>
<year>2005</year>
<price=>29.99</price>

</book>

<book category="WEB">
<title lang="en"=Learning XML</titlex>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</pricex>

</boock>

</bookstorex>

The root element in the example is <bookstore>. All <book>
elements in the document are contained within <bookstore>.

The <book> element itself has 4 children:
<title>,< author>, <year>, <price>.

XML Syntax Rules — to be wellformed

All XML Elements Must Have a Closing Tag
XML Tags are Case Sensitive

XML Documents must have one Root Element
XML Elements must be Properly Nested

XML Attribute values must be Quoted

Entity References

XML Syntax Rules 2

Entity References
— Some characters have a special meaning in XML.

— If you place a character like "<" inside an XML element, it will generate an error
because the parser interprets it as the start of a new element.

— Example - This will generate an XML error:
<message>if salary < 1000 then</message>
To avoid this error, replace the "<" character with an entity reference:

There are 5 predefined entity references in XML:

— < < less than

— > > greater than
— & & ampersand

— ' ’ apostrophe

— " " quotation mark

Note: Only the characters "<" and "&" are strictly illegal in XML.
The greater than character is legal, but it is a good habit to replace it.

XML Elements vs. Attributes

Take a look at these two examples:

<person sex="female"> // Attribute
<firstname>Anna</firstname> // Sex inf. to ‘person’-tag
<lastname>Smith</lastname>

</person>
<person> // Element
<sex>female</sex> // Sex separate tag

<firstname>Anna</firstname>
<lastname>Smith</lastname>
</person>

Both examples provide the same information.

There are no rules about when to use attributes and when to use elements.
But in general use elements except for metadata.

Valid XML Documents

e A "Valid" XML document is
— "Well Formed" XML document
— Conforms to a Document Type Definition (DTD):

e <?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE note SYSTEM "Note.dtd">
<note>
<to>Tove</to><from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

* The DOCTYPE declaration in the example above, is a
reference to an external DTD file.

XML DTD

The purpose of a DTD is to define the structure of an XML
document.
It defines the structure with a list of legal elements:

<!DOCTYPE note |

<!ELEMENT note (to, from,heading,body)>
<!ELEMENT to (#PCDATA) >

<!ELEMENT from (#PCDATA) >

<!ELEMENT heading (#PCDATA) >

<!ELEMENT body (#PCDATA) >

] >

XXX+ ->1-many xxx* ->0-many xxx? ->0-1

, ->and | ->or

XML Schema

W3C supports an XML based alternative to DTD
called XML Schema:
<xs:element name="note">

<xXs:complexType>
<Xs:sequence>

<xXs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>

Json - JavaScript Object Notation

Language for storing and exchanging data
(Like XML)

Platform independent (like XML)
Program Language independent (Like XML)
No validation (unlike XML)

More compressed notation than XML

(e.g. Car(model,color,registrationNumber)
XML = 235 Char, Json=56)

Json - structure

* { object}
* “name” : “value”

/(]

* “name” : [“valuel”, “value2”]

Example
{“Book”: {“title”:"Applying UML”, “Author”:”Larman”}}

