
XML intro

What is XML?

• XML stands for EXtensible Markup Language

• XML is a markup language much like HTML

• XML was designed to carry data, not to display data

• XML tags are not predefined. You must define your own tags

• XML is designed to be self-descriptive

• XML is a W3C Recommendation

The Difference
Between XML and HTML

• XML is not a replacement for HTML.

• XML and HTML were designed with different goals:

– XML was designed to transport and store data, with focus
on what data is. (like model)

– HTML was designed to display data, with focus on how
data looks. (like view)

Therefore - HTML is about displaying information, while
XML is about carrying information.

XML Does not DO Anything

• XML was created to structure, store, and transport
information.

• The following example
is a note to Tove from Jani, stored as XML:

• <note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this Weekend!</body>
</note>

• The note above is quite self descriptive. It has sender and
receiver information, it also has a heading and a message
body.

• But still, this XML document does not DO anything.

XML Simplifies Data Sharing

• In the real world, computer systems and databases contain
data in incompatible formats.

• XML data is stored in plain text format. This provides a
software- and hardware-independent way of storing and
exchanging data.

• This makes it much easier to create data that different
applications can share.

XML Simplifies Data Transport

• With XML, data can easily be exchanged between
incompatible systems.

• One of the most time-consuming challenges for developers is
to exchange data between incompatible systems over the
Internet.

• Exchanging data as XML greatly reduces this complexity, since
the data can be read by different incompatible applications.

XML Documents Form a Tree Structure

• XML documents must contain a root element. This element is
"the parent" of all other elements.

• The elements in an XML document form a document tree. The
tree starts at the root and branches to the lowest level of the
tree.

XML Documents - example

• All elements can have sub elements (child elements):

• <root>

<child>

<subchild>.....</subchild>

</child>

</root>

• The terms parent, child, and sibling are used to describe the
relationships between elements.

• Parent elements have children. Children on the same level are
called siblings (brothers or sisters).

Example of XML-dom-tree

The root element in the example is <bookstore>. All <book>
elements in the document are contained within <bookstore>.

The <book> element itself has 4 children:
<title>,< author>, <year>, <price>.

XML Syntax Rules – to be wellformed

• All XML Elements Must Have a Closing Tag

• XML Tags are Case Sensitive

• XML Documents must have one Root Element

• XML Elements must be Properly Nested

• XML Attribute values must be Quoted

• Entity References

XML Syntax Rules 2
• Entity References

– Some characters have a special meaning in XML.
– If you place a character like "<" inside an XML element, it will generate an error

because the parser interprets it as the start of a new element.
– Example - This will generate an XML error:

<message>if salary < 1000 then</message>
To avoid this error, replace the "<" character with an entity reference:

There are 5 predefined entity references in XML:
– < < less than
– > > greater than
– & & ampersand
– ' ’ apostrophe
– " ” quotation mark

• Note: Only the characters "<" and "&" are strictly illegal in XML.
The greater than character is legal, but it is a good habit to replace it.

XML Elements vs. Attributes
• Take a look at these two examples:

<person sex="female"> // Attribute

<firstname>Anna</firstname> // Sex inf. to ‘person’-tag

<lastname>Smith</lastname>

</person>

• <person> // Element

<sex>female</sex> // Sex separate tag

<firstname>Anna</firstname>

<lastname>Smith</lastname>

</person>

• Both examples provide the same information.

• There are no rules about when to use attributes and when to use elements.
But in general use elements except for metadata.

Valid XML Documents

• A "Valid" XML document is
– "Well Formed" XML document

– Conforms to a Document Type Definition (DTD):

• <?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to><from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

• The DOCTYPE declaration in the example above, is a
reference to an external DTD file.

XML DTD

• The purpose of a DTD is to define the structure of an XML
document.
It defines the structure with a list of legal elements:

• <!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

• xxx+ ->1-many xxx* -> 0-many xxx? -> 0-1

• , -> and | -> or

XML Schema

• W3C supports an XML based alternative to DTD
called XML Schema:

• <xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Json - JavaScript Object Notation

• Language for storing and exchanging data
(Like XML)

• Platform independent (like XML)

• Program Language independent (Like XML)

• No validation (unlike XML)

• More compressed notation than XML
(e.g. Car(model,color,registrationNumber)
XML = 235 Char, Json=56)

Json - structure

• { object }

• “name” : “value”

• “name” : [“value1”, “value2”]

Example
{“Book”: {“title”:”Applying UML”, “Author”:”Larman”}}

