COMPUTING SUBJECT:

TYPE:

IDENTIFICATION:

COPYRIGHT:

LEVEL:

TIME CONSUMPTION:

EXTENT:

OBJECTIVE:

PRECONDITIONS:

COMMANDS:

Restful ASP.Net Core-services

Assignment

RestService#6

Peter Levinsky & Michael Claudius

Medium

1v5-2% hours

50-60 lines

Adding supporting CORS to the Restful services

Rest service theory. Http-concepts
Computer Networks Ch. 2.2



IDENTIFICATION: RestService#6 / PELE with kindly respect and inspiration from MICL

Overall Purpose

The overall purpose for the group of ‘RestService’ assignments is to be able to provide and
consume restful ASP.Net Core web services, to prepare the ‘RestService’ to be published in
Azure, including testing the service and finally to setup the ‘RestService’ to be consumed from
a browser (e.g. using Typescript) i.e. support CORS.

The whole group of assignments consist of 7 steps:

A simple REST Service with CRUD.

More advanced and complex URI’s.

Adding help-pages to the REST Service (Swagger)

Testing a REST Service and publish in Azure.

Consuming a REST service from a C# Console application.

. Adding Support for CORS to the REST Service

(this assignment)
7. A REST Service using a database

ok wnE

Background Material:

The HTTP protocol: See Computer Network chap 2 pp. 111-136

Note of REST (Peter Levinsky): See NetHttpNote.pdf

Oswago Universitet: RESTful Service Best Practices: Recommendations for Creating Web
Services: See http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf

Usefull tools (Postman & Fiddler): See Tools.htm (tool #3 & tool #4)

Additional Literature

Note: https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-
Origin-Resource-Sharing-for-REST-APIs/#



RESTService1-simple-CRUD.pdf
RESTService2-advanced.pdf
RESTService3-swagger.pdf
RESTService4-Testing-and-Azure.pdf
RESTService5-ConsumingRest.pdf
NetHttpNote.pdf
http://cs.oswego.edu/~alex/teaching/csc435/RESTful.pdf
../ch2-Tools.htm
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/
https://www.moesif.com/blog/technical/cors/Authoritative-Guide-to-CORS-Cross-Origin-Resource-Sharing-for-REST-APIs/

This Assignment: RestService#6

Purpose
The purpose of this assignment is to refactor your REST Service so it can manage call from
script-pages in a browser in other words to support CORS.

Mission
You are to design and implement CORS (Cross Origin Resource Sharing). There are three
different way to design and implement CORS, they varying in the granularity of access control.

1. GlobalWare, Quick, but not so configurable and UNSECURE in Azure (do NOT work
when using localhost!)

2. MiddleWare, General setup CORS for the whole REST Service.

3. MVC, Specific setup CORS for each URI.

Assignment 1: Quick solution in Azure

a. Open the Azure portal https://portal.azure.com/

b. Open your APP Service that hold your REST Service, it will similar to this:

O Anemsenice

T—H:ave | X Discard |

CORsS

Cross-Origin Resource Sharing (CORS) allows JavaScript code running in a browser on an external host to interact with your £
http://example.com:12345). To allow all, use *** and remove all othér origins from the list. Slashes are not allowed as part of ¢

Request Credentials

For Allowed origins insert ‘*’, meaning everything from anywhere.
Remember to save.
Now it’s working in your Azure REST Service.


https://portal.azure.com/

Assignment 2: Middelware, General setup CORS for the whole REST Service

a. First you need a NuGet-package installed; at your project open the NuGet manager
and choose ‘Microsoft. AspNetCore.Cors’ version 2.1.1 (NOT 2.2.0) to be installed:

) RestCustomerService - Microsoft Visual Studio Y & | Quick Launch (Ctrl+Q) Pl - B x

File Edit View Project Buld Debug Team Tools Architecture Test ReSharper Analyze Window Help Peter Levinsky ~
e ‘ﬁv@ u.-_l-‘l\ - \ Debug ~ AnyCPU - }HSExprEis(Flrefox]vcv‘P -

NuGet: RestCustomerService + X [[aTEGN e A= RestCustomerService e

“«
‘

Solution Explorer 7

i A B-o-5¢a@m
Browse Installed Updates @ NuGet Package Manager: RestCustomerService @B-lo-5¢a@| "E

Search Solution Explorer (Ctrl+") P~
cors % | & [ include prerelease Packege source: nugetorg = {# 557 Selution RestCustomerservice' (1 project)

4 5] RestCustomerService
G Connected Services

1 Microsoﬁ.AspNet.WebA‘..e 1 b Properties

3
5
¢ Microsoft. AspNet.WebApi.Cors @ osoft, 7.63M downloads v526 b b =m References
3 This package contains the component: s-Origin Resource Sharing App_Data
o (CORS) in ASP.NET Web APL. Version: |Latest stable 526 = Install b i App Start
. . . b Areas
g B Microsoft.Owin.Cors & by Microsof ft, 5.17M downloads v4.00 b Content
= This package contains the components o enable Cross-Origin Resource Sharing (¥) Options 3 Controllers
2 (CORS) in OWIN middleware. b fonts
i ) . . Models
] e Simple.Owin.Cors by Mark Rendle, 6.66K downloads v0.1.2.52227 Description » Seripts
o CORS-handling middleware for QWIN, This package contzins the compnents to enable b g Views
g \C,J:;i\g‘ngm Resource Sharing (CORS) in ASP.NET b ) Applicationinsights.config
. o . ' [ favicon.ico

e \EN.‘edbA\:IbZ‘;;Z‘ORS.A:th::tl::tl:n :y B\alie Liu, MAE“;;‘;:E:S \ ) v1.01 Version: 526 b &) Global.asax

Lild 2 WebAPI project first. Then NuGet this package to enable uthentication
proj packsg Authors}: Microsoft ¥ packages.config
b ) Web.config
License:
@ GraphiteWeb.Cors by Mike 0'Brien, 4.64K downloads V10136
Adds CORS support to the Graphite Web Framework.
Date published:

~|  ProjectURL  hm w.asp.net/web-api

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, Report Abuse:  hitps://www.nuget.org/packages/
third-party packages. Microsoft.AspNet Web/Api Cors/5.2.
&/ReportAbuse

[1 De not showthis again Tags: Cors, Cross, Origin, AspNet,

AspNetWebApi, WebApi, Microsoft v | Solution Explorer [[REYr Tt N riee e

Error List .. Output Web Publish Activity Data Taols Operations

1 Add

f-ERTBOF D

If the latest version 2.2.0 do not install, then downgrade to version 2.1.1.
and yes ... It do take some time ®

b. In the solution (Solution Explore); Open the file ‘Startup.cs’.
In the ‘ConfigureServices’ method, add the line

services.AddCors () ;
c. Still in the Startup.cs — class in the ‘Configure’-method:

Add the lines before app.UseMvc():

app.UseCors(
options =>

{
options.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeaders();

// allow everything from anywhere

1)

d. Now extend this for those services i.e. methods you will have to support CORS.

e. Publish your Rest Service in Azure and try with some of your Typescript applications.
(if you have solved assignment 1, then go back to Azure and remove the “*°)

f. Change the AllowedMethods to be only GET and POST i.e. you are not allowed to
modify nor delete any resources (here Items).



Alternative configure the Middelware as policy based
A) Same as bullet a) install package
B) In the solution (Solution Explore); Open the file ‘Startup.cs’.
In the ‘ConfigureServices’ method, add the line
services.AddCors (options =>
{ options.AddPolicy ("AllowAnyOrigin",
builder => builder.AllowAnyOrigin());
})
C) Still in the Startup.cs — class in the ‘Configure’-method:

Add the lines before app.UseMvc():

app.UseCors("AllowAnyOrigin™);
Alternative configure - ended

g. Check that your REST service is correctly configured for CORS using Postman or
Fiddler. Compose a simple request (i.e. GET) with a header-field :

Origin: { your location e.g. http://easj.dk }
It should return a header field:
Access-Control-Allow-Origin: {your location e.g. easj.dk}

Or check for more complex request (i.e. PUT, POST, and DELETE) by a preflighted
request using an ‘OPTION’ request.

Origin: {your location e.g. http://easj.dk}
Access-Control-Request-Method: POST, GET
Access-Control-Request-Headers: Authorization, Content-

Type



E.g. (Fiddler):

Parsed Raw  Sgatchpad Options

‘OPTIONS v ‘ ‘https: /flocalhost: 44313 /api/customer v ‘ ‘HFTP] 11 v ]

Accept: */*

User-Agent: Fiddler

Host: localhost:44313

Content-Type: application/json
Content-Length: 0

Origin: eagj.dk
Access-Control-Request-Method: GET, POST

The server (with your CORS REST service) should return:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: {your location e.g. easj.dk}
Access—-Control-Allow-Methods: POST, PUT, DELETE, GET,
Access-Control-Allow-Headers: Authorization, Content-Type

E.g. (Fiddler):

Request Headers [Raw] [Header Definitions]
OPTIONS /apilcustomer HTTP/1.1
Client ~
Accept: */*
User-Agent: Fiddler
Entity
Content-Length: 0
Content-Type: application/json
Miscellaneous
Access-Control-Request-Method: GET, POST
Security
Origin: eagj.dk
Transport v

Transformer \ | Headers \ TextView | SyntaxView | ImageView \ HexView \ WebView | Auth | Caching | Cookies |
Raw | JSON | xmL |
Response Headers [Raw] [Header Definitions]
HTTP/1.1 204 No Content
Cache

Date: Mon, 22 Oct 2018 16:31:12 GMT
Miscellaneous

Server: Kestrel

X-Powered-By: ASP.NET

X-SourceFiles: =?UTF-8?B?QzpcRCBECmI2ZZVxVbmRIcnZpc25pbmdcQ29kcOMIXFNvbHV0aW9uC1xSZXNOQ3VzdGItZXITZX12aW
Security

Access-Control-Allow-Methods: "GET, POST"

Access-Control-Allow-Origin: *

What happen if you request access to PUT or DELETE ??

If you miss to uncheck the https when creating the REST service in assignment 1
do this and the following bullet. Unfortunately you probably get a 301/502 error
security error.

Why?



h.

The issue is that if your project was created it was configured for Https and Fiddler
uses Http-scheme for Azure. Read on...

Go to your Azure Portal R MR o omerseeCoreX - Comtom domans
1_ Open your Web_App prOJeCt . TifIlf‘{estCustomerServiceCoreX - Custom domains
2. Find Custom domains in the € Uemesh P racs
left scroll-bar Settings R
3. Set Https_0n|y to OFF | Application settings Custom Hostnames
4. C I ick Refresh Authentication / Authorization

Configure and manage custom hostname

@ Application Insights
your app Learn more

& Managed service identity

=
Backups o

&8 Custom domains

SSL settinas

Assignment 3: MVC, Specific setup CORS for each URI

This section describes how to extend your Rest Service to support CORS even more fine

grained.
In the following you will use the MVC approach; i.e. the rules/policies are specific for each
controller and each method.

a.

In the solution (Solution Explorer) open the file Startup.cs.
In the ConfigureServices method, add various policies like:

services.AddCors(options =>

{
options.AddPolicy("AllowSpecificOrigin",

builder => builder.WithOrigins("http://example.com"));

options.AddPolicy("AllowAnyOrigin",
builder => builder.AllowAnyOrigin());

options.AddPolicy("AllowAnyOriginGetPost",
builder => builder.AllowAnyOrigin().WithMethods("GET",
"POST"));

s

In the controller, ItemsController, specify the policy you want on the controller itself,
like:
[Route ("api/[controller]")]

[EnableCors ("AllowAnyOrigin") ]
[ApiController]

Still the controller, specify the policy for the methods, suppressing the controller-
policy.

[HttpDelete ("{id}") ]



// no policy i.e. inherits the controller policy

[HttpPost]
[EnableCors ("AllowSpecifOrigin") ]

[HttpGet]
[DisableCors] //disable the controller policy

c. After published in Azure, check your new configuration using Fiddler or Postman like
in previous assignment.

Congratulations your REST service can now be used from e.g. a typescript application, the

last step is to provide persistence in your REST service through a Database instead of a
static-list.



