Test

Background:
Lees let Larman ch. 21 p. 385-389

Orientering Wiki: the V-model (http://en.wikipedia.org/wiki/V-Model (software development))

Types (or Stages) of Testing
e Developer Testing (tech.walkthrough)
0 Normal testing by the developer / programmer — to see it do work
e Independent and Stakeholder Testing (reviews)
0 Independent Testing denotes the test design and implementation that it is most
appropriate for someone independent from the team of developers to do.
e Unit Tests
0 Systematic automatic test of a unit (testing from a black box view)
e Integration Test
0 integration testing is performed to ensure that the components in combination do
work (e.g. that classes across packages do work)
e System Test
0 System testing is done when the software is functioning as a whole. Do the whole
system works
e Acceptance Test
0 The users do the testing and accepting as a final test action prior to deploying the
software. Check that all use-cases and all non-functional requirements work

From the guidelines
You can see how to set up (or derive) test cases o test your use-cases as well as the supplementary
requirements and for unit test and for Acceptance test

Below is the Unit testing discussed. When talking of unit tests you can divide them into

White box testing — where you check all programming lines have been executed with an accepted
result. See Wiki : whitebox testing

Black box testing — where you check all methods have been executed and all parameter boundaries
have been checked — of cause again with an accepted result. See Wiki : blackbox testing

Additional reading to better understand Blackbox and Whitebox testing :
http://www.cs.unh.edu/~it666/reading list/Defense/blackbox vs whitebox testing.pdf .

(Rev) October-2018
Peter Levinsky

Here is an example of the black box testing - which is the most common:
We have the class Person

A

We have to set up all ‘possible’ input values

(normal values, values on the boundary, values outside boundary and illegal values)

Person
= Attributes
-ID:int
- Name : string ID a number between 1000-99999
- Phone : int Name a text which is not null and at least 4 character long
= Operations Phone a number of 8 digits

Test Description of test case Expected value Passed
case successfully
#
1 Default constructor Object created
2 Set ID — value 999 ArgumentException // error
3 Set ID — value 1000 ID == 1000
4 Set ID — value 99999 ID == 99999
5 Set ID — value 100000 ArgumentException // error
6 Set ID — value 5678 ID==5678
7 Set ID — value -5 ArgumentException // error
8 Set Name - value null ArgumentException // error
9 Set Name — value empty (“”) ArgumentException // error
10 Set Name — value not empty but less than 4 | ArgumentException // error

value “123”
11 Set Name — value not empty and 4 Name == “1234"

value “1234"
12 Set Name — value not empty and 15 Name == “123456789012345"

value “123456789012345”
13 Set Phone — value 9999999 ArgumentException // error
14 Set Phone — value 10000000 Phone == 10000000
15 Set Phone — value 99999999 Phone == 99999999
16 Set Phone — value 100000000 ArgumentException // error
17 Set Phone — value 56781234 Phone == 56781234
18 Set Phone —value -5 ArgumentException // error
19 Constructor(2222,”Susanne”,12345678) ID ==2222

Name == “Susanne”
Phone == 12345678

20 Constructor(00999,”Susanne”,12345678) ArgumentException // error
21 Constructor(2222,null,12345678) ArgumentException // error
22 Constructor(2222,”Per”,12345678) ArgumentException // error
23 Constructor(2222,”Susanne”,1234567890) ArgumentException // error

(Rev) October-2018

Peter Levinsky

