Short crash on correlations

Propositional logic

- You have two statements:
 - · If it's raining, the street is wet
 - · If it's snowing, the street is wet
- What can you deduce
 - The street is wet,
 - The street is not wet
 - It have rained
 - It have not rained

- The street is wet,
 - => nothing it could rain or snow or something else like flooding
- The street is not wet
 - => it have not rained nor snowed
- It have rained
 - => The street is wet
- It have not rained
 - => nothing the street could be dry or wet from snowing

Causation and Correlation

- If we have a dependency between two figures abstract X and Y
 - X causes Y
 - T causes X
 - Both X and Y are caused by something else like Z
 - There is no causation going on; it's just a coincidence

Correlations - linear correlations

- 1. Correlation is Positive when the values increase together, and
- 2. Correlation is Negative when one value decreases as the other increases

Source: https://www.mathsisfun.com/data/correlation.html

How to calculate correlation by your self

- Let us call the two sets of data "x" and "y"
 (in example Temperature is x and Ice Cream Sales is y):
 - Step 1: Find the mean of x, and the mean of y
 - Step 2: Subtract the mean of x from every x value (call them "a"), do the same for y (call them "b")
 - Step 3: Calculate: a × b, a2 and b2 for every value
 - Step 4: Sum up a × b, sum up a2 and sum up b2
 - Step 5: Divide the sum of a × b by the square root of [(sum of a2) × (sum of b2)]

Source: https://www.mathsisfun.com/data/correlation.html

How to calculate ... cont.

Here is how

 calculated
 the first Ice
 Cream
 example
 values
 rounded to
 or 0
 decimal
 places):

2	Subtra	ct Mean	Calculate ab, a² and b²				
		*	*	_		· /	
Temp °C	Sales	"a"	"b"	a×b	a ²	b ²	
14.2	\$215	-4.5	-\$187	842	20.3	34,969	
16.4	\$325	-2.3	-\$77	177	5.3	5,929	
11.9	\$185	-6.8	-\$217	1,476	46.2	47,089	
15.2	\$332	-3.5	-\$70	245	12.3	4,900	
18.5	\$406	-0.2	\$4	-1	0.0	16	
22.1	\$522	3.4	\$120	408	11.6	14,400	
19.4	\$412	0.7	\$10	7	0.5	100	
25.1	\$614	6.4	\$212	1,357	41.0	44,944	
23.4	\$544	4.7	\$142	667	22.1	20,164	
18.1	\$421	-0.6	\$19	-11	0.4	361	
22.6	\$445	3.9	\$43	168	15.2	1,849	
17.2	\$408	-1.5	\$6	-9	2.3	36	
18.7	\$402			5,325	177.0	174,757	
-	1			7	1	~	
1 Calc	ulate M	eans	4 Sum Up				

https://www.mathsisfun.com/data/correlation.html

How to calculate ... cont.

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Where:

- Σ is Sigma, the symbol for "sum up"
- $(x_i \overline{x})$ is each x-value minus the mean of x (called "a" above)
- $(y_i \overline{y})$ is each y-value minus the mean of y (called "b" above)

Let move to practice

- If you choose humidity (x) and particles(y)
 - For the same timestamp you have x_i and y_i
 - Now do the 5 steps
 - => then you have r (the correlation coefficient)

Example:

X	Υ	Avg(x)	Avg(y)	X-avg(x)=a	Y-avg(y)=b	a*b	a ²	b ²
1.6	20	1.58	19.66	0.0166	0,3333	0.0055	0,000275	0.1111
1.7	22			0.1166	2,3333	0.2720	0,013595	5,444
1.45	17			-0,1333	-2,6666	0.35545	0,01776	7.1107
						0,63295	0.03163	12,6662

• R=0.999 i.e. In this example high correlation

Pig support

```
inpt = load '~/pig_data/...' as
  (amnt:double,id:chararray,c2:chararray);
grp = group inpt by id;
mean = foreach grp {
    sum = SUM(inpt.amnt);
    count = COUNT(inpt);
    generate group as id, sum/count as mean, sum as sum, count as count;
};
```

• http://stackoverflow.com/questions/12593527/finding-mean-using-pig-or-hadoop

Spark support

```
seriesX = sc.parallelize([1.0, 2.0, 3.0, 3.0, 5.0])
seriesY = sc.parallelize([11.0, 22.0, 33.0, 33.0, 555.0])

print("Correlation is: " + str(Statistics.corr(seriesX, seriesY, method="pearson")))

data = sc.parallelize([np.array([1.0, 10.0, 100.0]), np.array([2.0, 20.0, 200.0]), np.array([5.0, 33.0, 366.0])])

print(Statistics.corr(data, method="pearson"))
```

https://spark.apache.org/docs/latest/mllib-statistics.html