
Software Testing

1Software testing

Product Operation

Correctness Gør vi det rigtigt
Reliability Gør vi det nøjagtigt hele tiden
Efficiency Kører det optimalt på min HW
Integrity Er det sikkert
Usability Kan jeg køre det (brugervenligt)

Maintability Kan jeg rette i det
Flexsability Kan det ændres
Testability Kan det testes

Portability kan det køre på andre platforme
Reusability kan jeg genbruge dele af SW
Interoperability kan det kobles til andre systemer

Kvalitets faktorer

V model

Software testing 3

Program testing goals

To demonstrate to the developer and the

customer that the software meets its

requirements.

=> leads to validation testing

To discover situations in which the behavior of

the software is incorrect, undesirable or does

not conform to its specification.

=> leads to defect testing

4Software testing

Verification: (testing)

"Are we building the product right”.

 The software should conform to its specification.

Validation: (checking)

"Are we building the right product”.

 The software should do what the user really requires.

Verification vs validation

5Software testing

V model

Software testing 6

Different levels of testing
related to the V-model

 Verify the concepts and requirements
e.g. Are the domain model right? The use cases? (the users)

 Verify the design
e.g. design class diagrams and design sequence diagrams

(Reviews, Technical walkthrough by the project team)

 Component Validation
e.g. unit test and test cases (implementer)

 System and integration validation
e.g. system/integration test

 Operation Validation
e.g. acceptance test

7Software testing

Software testing 8

Software testing 9

Black box testing

 The system code is ‘unknown’ -> a black box

 Look only at the methods signatures

 Testing all kind of possible input and output

 In C# create a Unit Test

Software testing 10

Equivalence partitioning

11Software testing

Equivalence partitions

12Software testing

Test-driven development

 Test-driven development (TDD) is an approach to

program development in which you inter-leave testing

and code development.

 Tests are written before code and ‘passing’ the tests is

the critical driver of development.

 You develop code incrementally, along with a test for that

increment. You don’t move on to the next increment until

the code that you have developed passes its test.

 TDD was introduced as part of agile methods such as

Extreme Programming. However, it can also be used in

plan-driven development processes.

13Software testing

Test-driven development

14Software testing

Unit test in c#

 Console Programs

 Create a test unit project,

 Add reference to the project,

 Remember to have the class to be tested public.
(in resharper set cursor at the class – right click choose generate unit test)

 Make a test method for each test case

 App Programs

 Create a unit test app (universal windows),

 Add reference to the project,

 Remember to have the class to be tested public.
(in resharper set cursor at the class – right click choose generate unit test)

 Make a test method for each test case

Software testing 15

What can we do in in a test unit

 Annotations

 [TestClass] : set up the test

 [TestMethod] : This is a test method to be run

 [TestInitialize] : Run this before each test method

 Testing validation

 Assert.AreEqual(expected, actual)

 Assert.IsTrue(actual)

Software testing 16

Special for exception

 Console programs

 Make try – catch : NB! The catch is ok = green
 Try{

Call method;

Assert.Fail();

Catch{

//Ok

}

 Alternative make an annotation

[ExpectedException typeof (xxxException)]

 App programs

 Assert.ThrowsException<xxxException>(() => call method)

Software testing 17

